molecules-logo

Journal Browser

Journal Browser

Chemistry of Materials for Energy and Environmental Sustainability

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: 31 July 2024 | Viewed by 4956

Special Issue Editor


E-Mail Website
Guest Editor
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
Interests: graphene; carbon nanotube; supercapacitor; li-ion batteries; dual-ion batteries; energy storage materials; nanotechnology; 2D materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Today's industry trends are moving towards energy conservation, environmental protection and planetary sustainability in the development of new products. Many efforts have been devoted to developing various renewable energy resources, such as wind, solar and tidal energy sources. Due to the intermittent and uncontrollable characteristics of these energy resources, energy storage devices are required to deal with such problems. Advanced electrode materials are the key components of electrochemical energy systems. However, traditional electrode materials can no longer meet the needs of electrochemical materials in the fields of energy and environmental protection in the future. The aim of this Special Issue is to publish original research articles and review papers on the chemistry research of advanced materials relevant to energy conversion and storage, alternative fuel technologies, and environmental science. Potential topics include but are not limited to the following:

  • Photovoltaics and photoelectrochemistry;
  • Thermoelectricity, piezoelectricity, and triboelectricity;
  • Batteries, fuel cells, and supercapacitors;
  • Electrocatalysts;
  • Bioprocessing;
  • Carbon capture, storage, and utilization;
  • Clean water, wastewater treatment, and desalination.

Dr. Qingguo Shao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electrocatalysis
  • photocatalysis
  • energy storage and conversion
  • electrode materials
  • oil/water separation
  • superhydrophobic materials
  • water splitting

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 4672 KiB  
Article
Supramolecular Gels Based on C3-Symmetric Amides: Application in Anion-Sensing and Removal of Dyes from Water
by Geethanjali Kuppadakkath, Sreejith Sudhakaran Jayabhavan and Krishna K. Damodaran
Molecules 2024, 29(9), 2149; https://doi.org/10.3390/molecules29092149 - 05 May 2024
Viewed by 261
Abstract
We modified C3-symmetric benzene-1,3,5-tris-amide (BTA) by introducing flexible linkers in order to generate an N-centered BTA (N-BTA) molecule. The N-BTA compound formed gels in alcohols and aqueous mixtures of high-polar solvents. Rheological studies showed that the DMSO/water (1:1, v [...] Read more.
We modified C3-symmetric benzene-1,3,5-tris-amide (BTA) by introducing flexible linkers in order to generate an N-centered BTA (N-BTA) molecule. The N-BTA compound formed gels in alcohols and aqueous mixtures of high-polar solvents. Rheological studies showed that the DMSO/water (1:1, v/v) gels were mechanically stronger compared to other gels, and a similar trend was observed for thermal stability. Powder X-ray analysis of the xerogel obtained from various aqueous gels revealed that the packing modes of the gelators in these systems were similar. The stimuli-responsive properties of the N-BTA towards sodium/potassium salts indicated that the gel network collapsed in the presence of more nucleophilic anions such as cyanide, fluoride, and chloride salts at the MGC, but the gel network was intact when in contact with nitrate, sulphate, acetate, bromide, and iodide salts, indicating the anion-responsive properties of N-BTA gels. Anion-induced gel formation was observed for less nucleophilic anions below the MGC of N-BTA. The ability of N-BTA gels to act as an adsorbent for hazardous anionic and cationic dyes in water was evaluated. The results indicated that the ethanolic gels of N-BTA successfully absorbed methylene blue and methyl orange dyes from water. This work demonstrates the potential of the N-BTA gelator to act as a stimuli-responsive material and a promising candidate for water purification. Full article
(This article belongs to the Special Issue Chemistry of Materials for Energy and Environmental Sustainability)
Show Figures

Graphical abstract

15 pages, 4230 KiB  
Article
Uniform P-Doped MnMoO4 Nanosheets for Enhanced Asymmetric Supercapacitors Performance
by Yu Liu, Yan Li, Zhuohao Liu, Tao Feng, Huichuan Lin, Gang Li and Kaiying Wang
Molecules 2024, 29(9), 1988; https://doi.org/10.3390/molecules29091988 - 26 Apr 2024
Viewed by 300
Abstract
Manganese molybdate has garnered considerable interest in supercapacitor research owing to its outstanding electrochemical properties and nanostructural stability but still suffers from the common problems of transition metal oxides not being able to reach the theoretical specific capacitance and lower electrical conductivity. Doping [...] Read more.
Manganese molybdate has garnered considerable interest in supercapacitor research owing to its outstanding electrochemical properties and nanostructural stability but still suffers from the common problems of transition metal oxides not being able to reach the theoretical specific capacitance and lower electrical conductivity. Doping phosphorus elements is an effective approach to further enhance the electrochemical characteristics of transition metal oxides. In this study, MnMoO4·H2O nanosheets were synthesized on nickel foam via a hydrothermal route, and the MnMoO4·H2O nanosheet structure was successfully doped with a phosphorus element using a gas–solid reaction method. Phosphorus element doping forms phosphorus–metal bonds and oxygen vacancies, thereby increasing the charge storage and conductivity of the electrode material. The specific capacitance value is as high as 2.112 F cm−2 (1760 F g−1) at 1 mA cm−2, which is 3.2 times higher than that of the MnMoO4·H2O electrode (0.657 F cm−2). The P–MnMoO4//AC ASC device provides a high energy density of 41.9 Wh kg−1 at 666.8 W kg−1, with an 84.5% capacity retention after 10,000 charge/discharge cycles. The outstanding performance suggests that P–MnMoO4 holds promise as an electrode material for supercapacitors. Full article
(This article belongs to the Special Issue Chemistry of Materials for Energy and Environmental Sustainability)
Show Figures

Figure 1

13 pages, 2891 KiB  
Article
Enhanced Stability of Dimethyl Ether Carbonylation through Pyrazole Tartrate on Tartaric Acid-Complexed Cobalt–Iron-Modified Hydrogen-Type Mordenite
by Guangtao Fu and Xinfa Dong
Molecules 2024, 29(7), 1510; https://doi.org/10.3390/molecules29071510 - 28 Mar 2024
Viewed by 479
Abstract
In this study, pyrazole tartrate (Pya·DL) and tartaric acid (DL) complexed with cobalt–iron bimetallic modified hydrogen-type mordenite (HMOR) were prepared using the ion exchange method. The results demonstrate that the stability of the dimethyl ether (DME) carbonylation reaction to methyl acetate (MA) was [...] Read more.
In this study, pyrazole tartrate (Pya·DL) and tartaric acid (DL) complexed with cobalt–iron bimetallic modified hydrogen-type mordenite (HMOR) were prepared using the ion exchange method. The results demonstrate that the stability of the dimethyl ether (DME) carbonylation reaction to methyl acetate (MA) was significantly improved after the introduction of Pya·DL to HMOR. The Co∙Fe∙DL-Pya·DL-HMOR (0.8) sample exhibited sustainable stability within 400 h DME carbonylation, exhibiting a DME conversion rate of about 70% and MA selectivity of above 99%. Through modification with the DL-complexed cobalt–iron bimetal, the dispersion of cobalt–iron was greatly enhanced, leading to the formation of new metal Lewis acidic sites (LAS) and thus a significant improvement in catalysis activity. Pya·DL effectively eliminated non-framework aluminum in HMOR, enlarged its pore size, and created channels for carbon deposition diffusion, thereby preventing carbon accumulation and pore blockage. Additionally, Pya·DL shielded the Bronsted acid sites (BAS) in the 12 MR channel, effectively suppressing the side reactions of carbon deposition and reducing the formation of hard carbon deposits. These improvements collectively contribute to the enhanced stability of the DME carbonylation reaction. Full article
(This article belongs to the Special Issue Chemistry of Materials for Energy and Environmental Sustainability)
Show Figures

Figure 1

11 pages, 2415 KiB  
Article
[BMP]+[BF4]-Modified CsPbI1.2Br1.8 Solar Cells with Improved Efficiency and Suppressed Photoinduced Phase Segregation
by Haixia Xie, Lei Li, Jiawei Zhang, Yihao Zhang, Yong Pan, Jie Xu, Xingtian Yin and Wenxiu Que
Molecules 2024, 29(7), 1476; https://doi.org/10.3390/molecules29071476 - 26 Mar 2024
Viewed by 369
Abstract
With the rapid progress in a power conversion efficiency reaching up to 26.1%, which is among the highest efficiency for single-junction solar cells, organic–inorganic hybrid perovskite solar cells have become a research focus in photovoltaic technology all over the world, while the instability [...] Read more.
With the rapid progress in a power conversion efficiency reaching up to 26.1%, which is among the highest efficiency for single-junction solar cells, organic–inorganic hybrid perovskite solar cells have become a research focus in photovoltaic technology all over the world, while the instability of these perovskite solar cells, due to the decomposition of its unstable organic components, has restricted the development of all-inorganic perovskite solar cells. In recent years, Br-mixed halogen all-inorganic perovskites (CsPbI3−xBrx) have aroused great interests due to their ability to balance the band gap and phase stability of pure CsPbX3. However, the photoinduced phase segregation in lead mixed halide perovskites is still a big burden on their practical industrial production and commercialization. Here, we demonstrate inhibited photoinduced phase segregation all-inorganic CsPbI1.2Br1.8 films and their corresponding perovskite solar cells by incorporating a 1-butyl-1-methylpiperidinium tetrafluoroborate ([BMP]+[BF4]−) compound into the CsPbI1.2Br1.8 films. Then, its effect on the perovskite films and the corresponding hole transport layer-free CsPbI1.2Br1.8 solar cells with carbon electrodes under light is investigated. With a prolonged time added to the reduced phase segregation terminal, this additive shows an inhibitory effect on the photoinduced phase segregation phenomenon for perovskite films and devices with enhanced cell efficiency. Our study reveals an efficient and simple route that suppresses photoinduced phase segregation in cesium lead mixed halide perovskite solar cells with enhanced efficiency. Full article
(This article belongs to the Special Issue Chemistry of Materials for Energy and Environmental Sustainability)
Show Figures

Figure 1

17 pages, 14794 KiB  
Article
Zwitterionic Tröger’s Base Microfiltration Membrane Prepared via Vapor-Induced Phase Separation with Improved Demulsification and Antifouling Performance
by Meng Wang, Tingting Huang, Meng Shan, Mei Sun, Shasha Liu and Hai Tang
Molecules 2024, 29(5), 1001; https://doi.org/10.3390/molecules29051001 - 25 Feb 2024
Viewed by 581
Abstract
The fouling of separation membranes has consistently been a primary factor contributing to the decline in membrane performance. Enhancing the surface hydrophilicity of the membrane proves to be an effective strategy in mitigating membrane fouling in water treatment processes. Zwitterionic polymers (containing an [...] Read more.
The fouling of separation membranes has consistently been a primary factor contributing to the decline in membrane performance. Enhancing the surface hydrophilicity of the membrane proves to be an effective strategy in mitigating membrane fouling in water treatment processes. Zwitterionic polymers (containing an equimolar number of homogeneously distributed anionic and cationic groups on the polymer chains) have been used extensively as one of the best antifouling materials for surface modification. The conventional application of zwitterionic compounds as surface modifiers is intricate and inefficient, adding complexity and length to the membrane preparation process, particularly on an industrial scale. To overcome these limitations, zwitterionic polymer, directly used as a main material, is an effective method. In this work, a novel zwitterionic polymer (TB)—zwitterionic Tröger’s base (ZTB)—was synthesized by quaternizing Tröger’s base (TB) with 1,3-propane sultone. The obtained ZTB is blended with TB to fabricate microfiltration (MF) membranes via the vapor-induced phase separation (VIPS) process, offering a strategic solution for separating emulsified oily wastewater. Atomic force microscopy (AFM), scanning electron microscopy (SEM), water contact angle, and zeta potential measurements were employed to characterize the surface of ZTB/TB blended membranes, assessing surface morphology, charge, and hydrophilic/hydrophobic properties. The impact of varying ZTB levels on membrane surface morphology, hydrophilicity, water flux, and rejection were investigated. The results showed that an increase in ZTB content improved hydrophilicity and surface roughness, consequently enhancing water permeability. Due to the attraction of water vapor, the enrichment of zwitterionic segments was enriched, and a stable hydration layer was formed on the membrane surface. The hydration layer formed by zwitterions endowed the membrane with good antifouling properties. The proposed mechanism elucidates the membrane’s proficiency in demulsification and the reduction in irreversible fouling through the synergistic regulation of surface charge and hydrophilicity, facilitated by electrostatic repulsion and the formation of a hydration layer. The ZTB/TB blended membranes demonstrated superior efficiency in oil–water separation, achieving a maximum flux of 1897.63 LMH bar−1 and an oil rejection rate as high as 99% in the oil–water emulsion separation process. This study reveals the migration behavior of the zwitterionic polymer in the membrane during the VIPS process. It enhances our comprehension of the antifouling mechanism of zwitterionic membranes and provides guidance for designing novel materials for antifouling membranes. Full article
(This article belongs to the Special Issue Chemistry of Materials for Energy and Environmental Sustainability)
Show Figures

Graphical abstract

18 pages, 3949 KiB  
Article
Mechanism of Phosphate Desorption from Activated Red Mud Particle Adsorbents
by Zhiwen Yang, Longjiang Li and Yalan Wang
Molecules 2024, 29(5), 974; https://doi.org/10.3390/molecules29050974 - 23 Feb 2024
Cited by 1 | Viewed by 721
Abstract
Herein, activated red mud particles are used as adsorbents for phosphorus adsorption. HCl solutions with different concentrations and deionized water are employed for desorption tests, and the desorption mechanism under the following optimal conditions is investigated: HCl concentration = 0.2 mol/L, desorbent dosage [...] Read more.
Herein, activated red mud particles are used as adsorbents for phosphorus adsorption. HCl solutions with different concentrations and deionized water are employed for desorption tests, and the desorption mechanism under the following optimal conditions is investigated: HCl concentration = 0.2 mol/L, desorbent dosage = 0.15 L/g, desorption temperature = 35 °C, and desorption time = 12 h. Under these conditions, the phosphate desorption rate and amount reach 99.11% and 11.29 mg/g, respectively. Notably, the Langmuir isothermal and pseudo-second-order kinetic linear models exhibit consistent results: monomolecular-layer surface desorption is dominant, and chemical desorption limits the rate of surface desorption. Thermodynamic analysis indicates that phosphorus desorption by the desorbents is spontaneous and that high temperatures promote such desorption. Moreover, an intraparticle diffusion model demonstrates that the removal of phosphorus in the form of precipitation from the surface of an activated hematite particle adsorbent primarily occurs via a chemical reaction, and surface micromorphological analysis indicates that desorption is primarily accompanied by Ca dissolution, followed by Al and Fe dissolutions. The desorbents react with the active elements in red mud, and the vibrations of the [SiO4]4− functional groups of calcium–iron garnet and calcite or aragonite disappear. Further, in Fourier-transform infrared spectra, the intensities of the peaks corresponding to the PO43− group considerably decrease. Thus, desorption primarily involves monomolecular-layer chemical desorption. Full article
(This article belongs to the Special Issue Chemistry of Materials for Energy and Environmental Sustainability)
Show Figures

Graphical abstract

12 pages, 5404 KiB  
Article
High-Performance Dual-Ion Battery Based on Silicon–Graphene Composite Anode and Expanded Graphite Cathode
by Guoshun Liu, Xuhui Liu, Xingdong Ma, Xiaoqi Tang, Xiaobin Zhang, Jianxia Dong, Yunfei Ma, Xiaobei Zang, Ning Cao and Qingguo Shao
Molecules 2023, 28(11), 4280; https://doi.org/10.3390/molecules28114280 - 23 May 2023
Cited by 3 | Viewed by 1699
Abstract
Dual-ion batteries (DIBs) are a new kind of energy storage device that store energy involving the intercalation of both anions and cations on the cathode and anode simultaneously. They feature high output voltage, low cost, and good safety. Graphite was usually used as [...] Read more.
Dual-ion batteries (DIBs) are a new kind of energy storage device that store energy involving the intercalation of both anions and cations on the cathode and anode simultaneously. They feature high output voltage, low cost, and good safety. Graphite was usually used as the cathode electrode because it could accommodate the intercalation of anions (i.e., PF6, BF4, ClO4) at high cut-off voltages (up to 5.2 V vs. Li+/Li). The alloying-type anode of Si can react with cations and boost an extreme theoretic storage capacity of 4200 mAh g−1. Therefore, it is an efficient method to improve the energy density of DIBs by combining graphite cathodes with high-capacity silicon anodes. However, the huge volume expansion and poor electrical conductivity of Si hinders its practical application. Up to now, there have been only a few reports about exploring Si as an anode in DIBs. Herein, we prepared a strongly coupled silicon and graphene composite (Si@G) anode through in-situ electrostatic self-assembly and a post-annealing reduction process and investigated it as an anode in full DIBs together with home-made expanded graphite (EG) as a fast kinetic cathode. Half-cell tests showed that the as-prepared Si@G anode could retain a maximum specific capacity of 1182.4 mAh g−1 after 100 cycles, whereas the bare Si anode only maintained 435.8 mAh g−1. Moreover, the full Si@G//EG DIBs achieved a high energy density of 367.84 Wh kg−1 at a power density of 855.43 W kg−1. The impressed electrochemical performances could be ascribed to the controlled volume expansion and improved conductivity as well as matched kinetics between the anode and cathode. Thus, this work offers a promising exploration for high energy DIBs. Full article
(This article belongs to the Special Issue Chemistry of Materials for Energy and Environmental Sustainability)
Show Figures

Figure 1

Back to TopTop