E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Energy Technology for the 21st Century - Materials and Devices"

Quicklinks

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Material Sciences and Nanotechnology".

Deadline for manuscript submissions: closed (31 August 2009)

Special Issue Editor

Guest Editor
Prof. Dr. Andreas Taubert

Institute of Chemistry, University of Potsdam, Building 26, Rm. 2.64, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
Website | E-Mail
Fax: +49 331 977 5055
Interests: inorganic materials synthesis in ionic liquids; functional ionic liquids-hybrid materials; self-assembling polymers, peptides & nanoparticles; calcium phosphate materials; silica hybrid materials; iron oxide materials; metal-peptide frameworks; materials for metallic implants

Special Issue Information

Dear Colleagues,

The generation, storage, and transport of energy are among the greatest challenges, if not the most formidable challenge at all, for years to come. Although there have been exciting new developments in these fields, many open questions remain. Many of these are closely connected to materials science, physics, and chemistry. As a result, International Journal of Molecular Sciences will publish a special issue on energy technology for the 21st century. The special issue will showcase the latest and most promising developments for the next centuries. Contributions (reviews and original papers) from all branches of energy technology are welcome and will be considered for publication.

Prof. Dr. Andreas Taubert
Guest Editor

Covered Subtopics and Leading Papers

Metal Organic Frameworks

  • Georgiev, I.G.; MacGillivray, L.R. Metal-mediated reactivity in the organic solid state: From self-assembled complexes to metal-organic frameworks. Chem. Soc. Rev. 2007, 36, 1239-1248.
  • Yaghi, O.M. Metal-organic Frameworks: A tale of two entanglements. Nature Mat. 2007, 6, 92-93.
  • Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. Metal-organic frameworks-prospective industrial applications. J. Mat. Chem. 2006, 16, 626-636

Photovoltaics

  • Barnham, K.W. J.; Mazzer, M.; Clive, B. Resolving the energy crisis: nuclear or photovoltaics? Nature Mat. 2006, 5, 161-164.
  • Peter, Laurence M. Dye-sensitized nanocrystalline solar cells. Phys. Chem. Chem. Phy. 2007, 9, 2630-2642.
  • Guenes, Serap; Neugebauer, Helmut; Sariciftci, Niyazi Serdar. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007, 107, 1324-1338.
  • Grimes, C.A. Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mat. Chem. 2007, 17, 1451-1457.
  • Peter, L.M. Characterization and Modeling of Dye-Sensitized Solar Cells. J. Phys. Chem. C 2007, 111, 6601-6612.
  • Walzer, K.; Maennig, B.; Pfeiffer, M.; Leo, K. Highly Efficient Organic Devices Based on Electrically Doped Transport Layers. Chem. Rev. 2007, 107, 1233-1271.

Fuel Cells

  • Bock, T.; Moehwald, H.; Muelhaupt, R. Arylphosphonic acid-functionalized polyelectrolytes as fuel cell membrane material. Macromol. Chem. Phys. 2007, 208, 1324-1340.
  • Feldheim, D.L. The New Face of Catalysis. Science 2007, 316, 699-700.
  • Gottesfeld, S. Polymer electrolyte and direct methanol fuel cells. Encyclopedia of Electrochemistry 2007, 5, 544-661.
  • Satyapal, S.; Petrovic, J.; Thomas, G. Gassing up with hydrogen. Scientific American 2007, 296, 80-87.
  • Steininger, H.; Schuster, M.; Kreuer, K. D.; Kaltbeitzel, A.; Bingoel, B.; Meyer, W. H.; Schauff, S.; Brunklaus, G.; Maier, J.; Spiess, H.W. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: A progress report. Physical Chemistry Chemical Physics 2007, I, 1764-1773.

Hydrogen Storage

  • Felderhoff, M.;.Weidenthaler, C.; von Helmolt, R.; Eberle, U. Hydrogen storage: the remaining scientific and technological challenges. Physical Chemistry Chemical Physics 2007, 9, 2643-2653.

Biofuels

  • Himmel, M.E.; Ding, S.Y.; Johnson, D.K.; Adney, W.S.; Nimlos, M.R.; Brady, J.W.; Foust, T.D. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science 2007, 315, 804-807.
  • Stephanopoulos, G. Challenges in Engineering Microbes for Biofuels Production. Science 2007, 315, 801-804.
  • Hahn-Haegerdal, B.; Galbe, M.; Gorwa-Grauslund, M. F.; Liden, G.; Zacchi,G. Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechn. 2006, 24, 549-556.
  • Petrus, L.; Noordermeer, M.A. Biomass to biofuels, a chemical perspective. Green Chemistry 2006, 8, 861-867.
  • Clark, J.H.; Budarin, V.; Deswarte, F.E.I.; Hardy, J. J.E.; Kerton, F.M.; Hunt, A.J.; Luque, R.; Macquarrie, D.J.; Milkowski, K.; Rodriguez, A.; Samuel, O.; Tavener, S.J.; White, R.J.; Wilson, A.J. Green chemistry and the biorefinery: a partnership for a sustainable future. Green Chemistry 2006, 8, 853-860.
  • Sticklen, M. Plant genetic engineering to improve biomass characteristics for biofuels. Curr. Opin. Biotechn. 2006, 17, 315-319.

Keywords

  • Biofuels
  • Metal Organic Frameworks
  • Photovoltaics
  • Bio-inspired power generation
  • Energetic Ionic Liquids
  • Fuel Cells/Hydrogen Storage
  • Energy Storage
  • "Green" Energy Technologies

Related Special Issue

Published Papers (8 papers)

View options order results:
result details:
Displaying articles 1-8
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Nitrate-Melt Synthesized HT-LiCoO2 as a Superior Cathode-Material for Lithium-Ion Batteries
Materials 2009, 2(3), 857-868; doi:10.3390/ma2030857
Received: 16 June 2009 / Accepted: 17 July 2009 / Published: 27 July 2009
Cited by 9 | PDF Full-text (782 KB) | HTML Full-text | XML Full-text
Abstract
An electrochemically-active high-temperature form of LiCoO2 (HT-LiCoO2)is prepared by thermally decomposing its constituent metal-nitrates at 700 ºC. The synthetic conditions have been optimized to achieve improved performance with the HT-LiCoO2cathode in Li-ion batteries. For this purpose, the synthesized
[...] Read more.
An electrochemically-active high-temperature form of LiCoO2 (HT-LiCoO2)is prepared by thermally decomposing its constituent metal-nitrates at 700 ºC. The synthetic conditions have been optimized to achieve improved performance with the HT-LiCoO2cathode in Li-ion batteries. For this purpose, the synthesized materials have been characterized by powder X-ray diffraction, scanning electron microscopy, and galvanostatic charge-discharge cycling. Cathodes comprising HT-LiCoO2 exhibit a specific capacity of 140 mAhg-1 with good capacity-retention over several charge-discharge cycles in the voltage range between 3.5 V and 4.2 V, and can sustain improved rate capability in contrast to a cathode constituting LiCoO2 prepared by conventional ceramic method. The nitrate-melt-decomposition method is also found effective for synthesizing Mg-/Al- doped HT-LiCoO2; these also are investigated as cathode materials for Li-ion batteries. Full article
(This article belongs to the Special Issue Energy Technology for the 21st Century - Materials and Devices)
Figures

Open AccessArticle Dynamic Response during PEM Fuel Cell Loading-up
Materials 2009, 2(3), 734-748; doi:10.3390/ma2030734
Received: 16 June 2009 / Accepted: 25 June 2009 / Published: 7 July 2009
Cited by 5 | PDF Full-text (863 KB) | HTML Full-text | XML Full-text
Abstract
A study on the effects of controlling and operating parameters for a Proton Exchange Membrane (PEM) fuel cell on the dynamic phenomena during the loading-up process is presented. The effect of the four parameters of load-up amplitudes and rates, operating pressures and current
[...] Read more.
A study on the effects of controlling and operating parameters for a Proton Exchange Membrane (PEM) fuel cell on the dynamic phenomena during the loading-up process is presented. The effect of the four parameters of load-up amplitudes and rates, operating pressures and current levels on gas supply or even starvation in the flow field is analyzed based accordingly on the transient characteristics of current output and voltage. Experiments are carried out in a single fuel cell with an active area of 285 cm2. The results show that increasing the loading-up amplitude can inevitably increase the possibility of gas starvation in channels when a constant flow rate has been set for the cathode; With a higher operating pressure, the dynamic performance will be improved and gas starvations can be relieved. The transient gas supply in the flow channel during two loading-up mode has also been discussed. The experimental results will be helpful for optimizing the control and operation strategies for PEM fuel cells in vehicles. Full article
(This article belongs to the Special Issue Energy Technology for the 21st Century - Materials and Devices)
Open AccessArticle Performance of a Yeast-mediated Biological Fuel Cell
Int. J. Mol. Sci. 2008, 9(10), 1893-1907; doi:10.3390/ijms9101893
Received: 12 June 2008 / Revised: 30 August 2008 / Accepted: 24 September 2008 / Published: 8 October 2008
Cited by 32 | PDF Full-text (594 KB) | HTML Full-text | XML Full-text
Abstract
Saccharomyces cerevisiae present in common Baker’s yeast was used in a microbial fuel cell in which glucose was the carbon source. Methylene blue was used as the electronophore in the anode compartment, while potassium ferricyanide and methylene blue were tested as electron acceptors
[...] Read more.
Saccharomyces cerevisiae present in common Baker’s yeast was used in a microbial fuel cell in which glucose was the carbon source. Methylene blue was used as the electronophore in the anode compartment, while potassium ferricyanide and methylene blue were tested as electron acceptors in the cathode compartment. Microbes in a mediator-free environment were used as the control. The experiment was performed in both open and closed circuit configurations under different loads ranging from 100 kΩ to 400Ω. The eukaryotic S. cerevisiae-based fuel cell showed improved performance when methylene blue and ferricyanide were used as electron mediators, rendering a maximum power generation of 146.71±7.7 mW/m3. The fuel cell generated a maximum open circuit voltage of 383.6±1.5 mV and recorded a maximum efficiency of 28±1.8 % under 100 kΩ of external load. Full article
(This article belongs to the Special Issue Energy Technology for the 21st Century - Materials and Devices)
Figures

Review

Jump to: Research

Open AccessReview Predicting New Materials for Hydrogen Storage Application
Materials 2009, 2(4), 2296-2318; doi:10.3390/ma2042296
Received: 2 December 2009 / Accepted: 11 December 2009 / Published: 14 December 2009
Cited by 3 | PDF Full-text (8126 KB) | HTML Full-text | XML Full-text
Abstract
Knowledge about the ground-state crystal structure is a prerequisite for the rational understanding of solid-state properties of new materials. To act as an efficient energy carrier, hydrogen should be absorbed and desorbed in materials easily and in high quantities. Owing to the complexity
[...] Read more.
Knowledge about the ground-state crystal structure is a prerequisite for the rational understanding of solid-state properties of new materials. To act as an efficient energy carrier, hydrogen should be absorbed and desorbed in materials easily and in high quantities. Owing to the complexity in structural arrangements and difficulties involved in establishing hydrogen positions by x-ray diffraction methods, the structural information of hydrides are very limited compared to other classes of materials (like oxides, intermetallics, etc.). This can be overcome by conducting computational simulations combined with selected experimental study which can save environment, money, and man power. The predicting capability of first-principles density functional theory (DFT) is already well recognized and in many cases structural and thermodynamic properties of single/multi component system are predicted. This review will focus on possible new classes of materials those have high hydrogen content, demonstrate the ability of DFT to predict crystal structure, and search for potential meta-stable phases. Stabilization of such meta-stable phases is also discussed. Full article
(This article belongs to the Special Issue Energy Technology for the 21st Century - Materials and Devices)
Figures

Open AccessReview Molecular Momentum Transport at Fluid-Solid Interfaces in MEMS/NEMS: A Review
Int. J. Mol. Sci. 2009, 10(11), 4638-4706; doi:10.3390/ijms10114638
Received: 28 August 2009 / Revised: 17 October 2009 / Accepted: 26 October 2009 / Published: 29 October 2009
Cited by 117 | PDF Full-text (676 KB) | HTML Full-text | XML Full-text
Abstract
This review is focused on molecular momentum transport at fluid-solid interfaces mainly related to microfluidics and nanofluidics in micro-/nano-electro-mechanical systems (MEMS/NEMS). This broad subject covers molecular dynamics behaviors, boundary conditions, molecular momentum accommodations, theoretical and phenomenological models in terms of gas-solid and liquid-solid
[...] Read more.
This review is focused on molecular momentum transport at fluid-solid interfaces mainly related to microfluidics and nanofluidics in micro-/nano-electro-mechanical systems (MEMS/NEMS). This broad subject covers molecular dynamics behaviors, boundary conditions, molecular momentum accommodations, theoretical and phenomenological models in terms of gas-solid and liquid-solid interfaces affected by various physical factors, such as fluid and solid species, surface roughness, surface patterns, wettability, temperature, pressure, fluid viscosity and polarity. This review offers an overview of the major achievements, including experiments, theories and molecular dynamics simulations, in the field with particular emphasis on the effects on microfluidics and nanofluidics in nanoscience and nanotechnology. In Section 1 we present a brief introduction on the backgrounds, history and concepts. Sections 2 and 3 are focused on molecular momentum transport at gas-solid and liquid-solid interfaces, respectively. Summary and conclusions are finally presented in Section 4. Full article
(This article belongs to the Special Issue Energy Technology for the 21st Century - Materials and Devices)
Figures

Open AccessReview Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage
Materials 2009, 2(4), 1697-1733; doi:10.3390/ma2041697
Received: 12 September 2009 / Revised: 22 October 2009 / Accepted: 23 October 2009 / Published: 29 October 2009
Cited by 223 | PDF Full-text (1531 KB) | HTML Full-text | XML Full-text
Abstract
This review summarizes the current state of polymer composites used as dielectric materials for energy storage. The particular focus is on materials: polymers serving as the matrix, inorganic fillers used to increase the effective dielectric constant, and various recent investigations of functionalization of
[...] Read more.
This review summarizes the current state of polymer composites used as dielectric materials for energy storage. The particular focus is on materials: polymers serving as the matrix, inorganic fillers used to increase the effective dielectric constant, and various recent investigations of functionalization of metal oxide fillers to improve compatibility with polymers. We review the recent literature focused on the dielectric characterization of composites, specifically the measurement of dielectric permittivity and breakdown field strength. Special attention is given to the analysis of the energy density of polymer composite materials and how the functionalization of the inorganic filler affects the energy density of polymer composite dielectric materials. Full article
(This article belongs to the Special Issue Energy Technology for the 21st Century - Materials and Devices)
Open AccessReview High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications
Int. J. Mol. Sci. 2009, 10(1), 325-344; doi:10.3390/ijms10010325
Received: 28 November 2008 / Revised: 8 January 2009 / Accepted: 13 January 2009 / Published: 15 January 2009
Cited by 64 | PDF Full-text (997 KB) | HTML Full-text | XML Full-text
Abstract
For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in
[...] Read more.
For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described. Full article
(This article belongs to the Special Issue Energy Technology for the 21st Century - Materials and Devices)
Open AccessReview Photoinduced Biohydrogen Production from Biomass
Int. J. Mol. Sci. 2008, 9(7), 1156-1172; doi:10.3390/ijms9071156
Received: 16 May 2008 / Revised: 9 June 2008 / Accepted: 17 June 2008 / Published: 8 July 2008
Cited by 6 | PDF Full-text (246 KB) | HTML Full-text | XML Full-text
Abstract
Photoinduced biohydrogen production systems, coupling saccharaides biomass such as sucrose, maltose, cellobiose, cellulose, or saccharides mixture hydrolysis by enzymes and glucose dehydrogenase (GDH), and hydrogen production with platinum colloid as a catalyst using the visible light-induced photosensitization of Mg chlorophyll-a (Mg Chl-a) from
[...] Read more.
Photoinduced biohydrogen production systems, coupling saccharaides biomass such as sucrose, maltose, cellobiose, cellulose, or saccharides mixture hydrolysis by enzymes and glucose dehydrogenase (GDH), and hydrogen production with platinum colloid as a catalyst using the visible light-induced photosensitization of Mg chlorophyll-a (Mg Chl-a) from higher green plant or artificial chlorophyll analog, zinc porphyrin, are introduced. Full article
(This article belongs to the Special Issue Energy Technology for the 21st Century - Materials and Devices)

Journal Contact

MDPI AG
IJMS Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
ijms@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to IJMS
Back to Top