E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Forest and Wood Vegetation Carbon Stores and Sequestration"

Quicklinks

A special issue of Forests (ISSN 1999-4907).

Deadline for manuscript submissions: closed (15 January 2014)

Special Issue Editor

Guest Editor
Dr. Michael Battaglia

CSIRO Ecosystem Science, Private Bag 12 Hobart Tasmania 7001, Australia
Website | E-Mail
Fax: +61 3 62375601
Interests: tree ecophysiology; process-based modelling; stress physiology; forest production

Special Issue Information

Dear Colleagues,

The global clearing of woody vegetation is a greenhouse gas emission source. While there is evidence that the terrestrial carbon sink has increased, recent widespread forest mortality climate related events indicate these sinks’ vulnerability. This has implications for global approaches to climate change mitigation that involve the creation of forest and woody vegetation sinks. Forest adaptation and mitigation are not goals within their own right; these activities further the objectives of agricultural production and sustain environmental services and, consequently, they support community livelihoods. Without a strong financial incentive, these will be the objectives that can drive the adoption of forest management policies that increase forest carbon sequestration.

Dr. Michael Battaglia
Guest Editor

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Forests is an international peer-reviewed Open Access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs).

Keywords

  • forest carbon sequestration
  • forest contributions to global emissions
  • adaptation to secure forest carbon stocks
  • drivers and enablers of practices to increase forest carbon sequestration
  • risks to forest carbon stores

Published Papers (15 papers)

View options order results:
result details:
Displaying articles 1-15
Export citation of selected articles as:

Research

Open AccessArticle The Inventory of Carbon Stocks in New Zealand’s Post-1989 Natural Forest for Reporting under the Kyoto Protocol
Forests 2014, 5(9), 2230-2252; doi:10.3390/f5092230
Received: 14 January 2014 / Revised: 1 September 2014 / Accepted: 5 September 2014 / Published: 19 September 2014
PDF Full-text (1309 KB) | HTML Full-text | XML Full-text
Abstract
To meet international greenhouse gas reporting obligations, New Zealand must report on carbon stocks in forests established after 1989 (post-1989 forest). Although predominately comprised of planted forest, post-1989 forest also contains a component of natural vegetation amounting to less than 10% by area.
[...] Read more.
To meet international greenhouse gas reporting obligations, New Zealand must report on carbon stocks in forests established after 1989 (post-1989 forest). Although predominately comprised of planted forest, post-1989 forest also contains a component of natural vegetation amounting to less than 10% by area. New Zealand undertook a national inventory of this natural stratum of post-1989 forest to provide estimates of carbon stocks and stock change in woody species over the first commitment period (2008–2012) of the Kyoto Protocol. Plots were installed on a 4-km grid, and the basal diameters and heights of trees and shrubs were measured for the first time from November 2012, to March 2013. Carbon stocks in 2012 were calculated using allometric functions developed from biomass samples from each site. Basal disc samples provided data on diameter increment and shrub and tree age annually from 1990 to 2012. These were used to predict carbon stocks per ha for individual plots in 2008 and to provide annual predictions by pool back to 1990. Carbon stocks summed across live and dead biomass pools (excluding soil) averaged 3.04, 16.70 and 28.73 t C/ha in 1990, 2008 and 2012, respectively. The disposition by pool was 2.25, 12.54 and 21.84 t C/ha in aboveground biomass, 0.56, 3.13 and 5.46 t C/ha in belowground biomass (using a root/shoot ratio of 0.25), 0.03, 0.17 and 0.23 t C/ha in deadwood, and 0.18, 0.86 and 1.21 t C/ha in litter in 1990, 2008 and 2012, respectively. In 1990, the woody biomass stock estimate per plot ranged from zero to 40 t C/ha and averaged 3.04 t C/ha across all plots. The methodology used to predict annual carbon stocks required an assumption concerning stem annual mortality. Sensitivity analysis suggested that varying this assumption had only a minor impact on predicted carbon stocks and changes. Plant age varied markedly within and between the natural forest plots, and therefore, the mean age of woody vegetation at each site was obtained by setting a threshold woody biomass carbon stock that needed to be achieved, and vegetation age was calculated as years since the threshold was achieved. This threshold approach facilitated the development of a yield table for predicting carbon (t/ha) as a function of vegetation mean age. Full article
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)
Open AccessArticle Biomass and Carbon Stocks of Sofala Bay Mangrove Forests
Forests 2014, 5(8), 1967-1981; doi:10.3390/f5081967
Received: 8 January 2014 / Revised: 25 July 2014 / Accepted: 5 August 2014 / Published: 14 August 2014
Cited by 10 | PDF Full-text (3183 KB) | HTML Full-text | XML Full-text
Abstract
Mangroves could be key ecosystems in strategies addressing the mitigation of climate changes through carbon storage. However, little is known regarding the carbon stocks of these ecosystems, particularly below-ground. This study was carried out in the mangrove forests of Sofala Bay, Central Mozambique,
[...] Read more.
Mangroves could be key ecosystems in strategies addressing the mitigation of climate changes through carbon storage. However, little is known regarding the carbon stocks of these ecosystems, particularly below-ground. This study was carried out in the mangrove forests of Sofala Bay, Central Mozambique, with the aim of quantifying carbon stocks of live and dead plant and soil components. The methods followed the procedures developed by the Center for International Forestry Research (CIFOR) for mangrove forests. In this study, we developed a general allometric equation to estimate individual tree biomass and soil carbon content (up to 100 cm depth). We estimated the carbon in the whole mangrove ecosystem of Sofala Bay, including dead trees, wood debris, herbaceous, pneumatophores, litter and soil. The general allometric equation for live trees derived was [Above-ground tree dry weight (kg) = 3.254 × exp(0.065 × DBH)], root mean square error (RMSE = 4.244), and coefficient of determination (R2 = 0.89). The average total carbon storage of Sofala Bay mangrove was 218.5 Mg·ha−1, of which around 73% are stored in the soil. Mangrove conservation has the potential for REDD+ programs, especially in regions like Mozambique, which contains extensive mangrove areas with high deforestation and degradation rates. Full article
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)
Open AccessArticle Soil Carbon Stocks in Two Hybrid Poplar-Hay Crop Systems in Southern Quebec, Canada
Forests 2014, 5(8), 1952-1966; doi:10.3390/f5081952
Received: 20 January 2014 / Revised: 2 July 2014 / Accepted: 30 July 2014 / Published: 7 August 2014
Cited by 1 | PDF Full-text (17650 KB) | HTML Full-text | XML Full-text
Abstract
Tree-based intercropping (TBI) systems, consisting of a medium to fast-growing woody species planted in widely-spaced rows with crops cultivated between tree rows, are a potential sink for atmospheric carbon dioxide (CO2). TBI systems contribute to farm income in the long-term by
[...] Read more.
Tree-based intercropping (TBI) systems, consisting of a medium to fast-growing woody species planted in widely-spaced rows with crops cultivated between tree rows, are a potential sink for atmospheric carbon dioxide (CO2). TBI systems contribute to farm income in the long-term by improving soil quality, as indicated by soil carbon (C) storage, generating profits from crop plus tree production and potentially through C credit trading. The objectives of the current study were: (1) to evaluate soil C and nitrogen (N) stocks in soil depth increments in the 0–30 cm layer between tree rows of nine-year old hybrid poplar-hay intercropping systems, to compare these to C and N stocks in adjacent agricultural systems; and (2) to determine how hay yield, litterfall and percent total light transmittance (PTLT) were related to soil C and N stocks between tree rows and in adjacent agricultural systems. The two TBI study sites (St. Edouard and St. Paulin) had a hay intercrop with alternating rows of hybrid poplar clones and hardwoods and included an adjacent agricultural system with no trees (i.e., the control plots). Soil C and N stocks were greater in the 0–5 cm depth increment of the TBI system within 1 m of the hardwood row, to the west of the poplar row, compared to the sampling point 1 m east of poplar at St. Edouard (p = 0.02). However, the agricultural system stored more soil C than the nine-year old TBI system in the 20–30 cm and 0–30 cm depth increments. Accumulation of soil C in the 20–30 cm depth increment could be due to tillage-induced burial of non-harvested crop residues at the bottom of the plow-pan. Soil C and N stocks were similar at all depth increments in TBI and agricultural systems at St. Paulin. Soil C and N stocks were not related to hay yield, litterfall and PTLT at St. Paulin, but hay yield and PTLT were significantly correlated (R = 0.87, p < 0.05, n = 21), with lower hay yield in proximity to trees in the TBI system and similar hay yields in the middle of alleys as in the agricultural system. Nine years of TBI practices did not produce significant gains in soil C and N stocks in the 0–30 cm layer, indicating that the total C budget, including C sequestered in trees and unharvested components (litterfall and roots), must be assessed to determine the long-term profitability of TBI systems in Canada. Full article
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)
Open AccessArticle Vulnerability of Plantation Carbon Stocks to Defoliation under Current and Future Climates
Forests 2014, 5(6), 1224-1242; doi:10.3390/f5061224
Received: 16 April 2014 / Revised: 22 May 2014 / Accepted: 26 May 2014 / Published: 10 June 2014
Cited by 2 | PDF Full-text (497 KB) | HTML Full-text | XML Full-text
Abstract
Plantation species globally are susceptible to a range of defoliating pests, but pest damage is rarely considered when estimating biomass C sequestered by these forests. We examined the impacts of defoliation on Eucalyptus globulus plantation C stocks under current and future climates using
[...] Read more.
Plantation species globally are susceptible to a range of defoliating pests, but pest damage is rarely considered when estimating biomass C sequestered by these forests. We examined the impacts of defoliation on Eucalyptus globulus plantation C stocks under current and future climates using Mycospharella Leaf Disease (MLD) as a case study, hypothesising that biomass C sequestered in plantations would decrease with a warming and drying climate, and that impacts of defoliation would be strongly site dependent. Six E. globulus plantation sites with varying productivity were selected for the study. Current (1961–2005) and future (2030 and 2070) severity and frequency of MLD were estimated for each site using the bioclimatic niche model CLIMEX, and used as inputs to the process-based forest productivity model CABALA. CABALA was used to develop annual estimates of total living and dead biomass for current, 2030 and 2070 climate scenarios. Averaged annual biomass outputs were used to initialise the carbon accounting model FullCAM for calculation of C sequestered in living and dead biomass over a growing cycle. E. globulus plantations were predicted to sequester between 4.8 and 13.4 Mg C·ha−1·year−1 over 10 years under current climatic conditions. While our estimates suggest that overall this is likely to increase slightly under future climates (up to a maximum of 17.2 Mg C·ha−1·year−1 in 2030, and a shift in minimum and maximum values to 7.6 and 17.6 respectively in 2070), we predict considerable between-site variation. Our results suggest that biomass C sequestration will not necessarily be enhanced by future climatic conditions in all locations. We predict that biomass C sequestration may be reduced considerably by defoliation meaning that any gains in C sequestration associated with changing climate may be substantially offset by defoliation. While defoliation has a generally small impact under current climatic conditions in these plantations, the impact is likely to increase in the future, with reductions of up to 40% predicted for some sites under future climates. We conclude that the combined impacts of climate change on pest frequency and severity, and on host responses to defoliation, may reduce biomass C sequestration in E. globulus plantations in the future. Full article
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)
Open AccessArticle The Application of Stem Analysis Methods to Estimate Carbon Sequestration in Arboreal Shrubs from a Single Measurement of Field Plots
Forests 2014, 5(5), 919-935; doi:10.3390/f5050919
Received: 14 January 2014 / Revised: 2 May 2014 / Accepted: 5 May 2014 / Published: 16 May 2014
Cited by 3 | PDF Full-text (1406 KB) | HTML Full-text | XML Full-text
Abstract
Repeated measurements of plots are usually made to directly determine carbon stock changes over time. However, it is sometimes only practical or feasible to inventory plots at the end of a period of interest, and stock changes need to be predicted retrospectively from
[...] Read more.
Repeated measurements of plots are usually made to directly determine carbon stock changes over time. However, it is sometimes only practical or feasible to inventory plots at the end of a period of interest, and stock changes need to be predicted retrospectively from supplementary information on growth rate. This situation applied to the natural stratum of post-1989 forest in New Zealand, for which carbon sequestration over Commitment Period 1 (2008–2012) of the Kyoto Protocol needed to be estimated from inventory data acquired in 2012. A pilot study was undertaken to test and refine methods that could be applied in the national inventory, utilizing plots that had been installed in eligible post-1989 natural forest in 2008. The plots had actual measurements and shrub biomass sampling to directly estimate carbon stocks in 2008. These plots were re-measured and sampled in 2012, and basal disc samples from plants growing adjacent to each plot collected to provide data to model stem annual increment in diameter and height of shrubs growing on the plot. We present the results of this test of methods, and discuss refinements to field procedures and calculation methods to be applied in the national inventory of this stratum of post-1989 forest in 2012. Full article
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)
Open AccessCommunication Accountable Accounting: Carbon-Based Management on Marginal Lands
Forests 2014, 5(4), 847-861; doi:10.3390/f5040847
Received: 20 January 2014 / Revised: 4 April 2014 / Accepted: 11 April 2014 / Published: 23 April 2014
Cited by 2 | PDF Full-text (729 KB) | HTML Full-text | XML Full-text
Abstract
Substantial discussion exists concerning the best land use options for mitigating greenhouse gas (GHG) emissions on marginal land. Emissions-mitigating land use options include displacement of fossil fuels via biofuel production and afforestation. Comparing C recovery dynamics under these different options is crucial to
[...] Read more.
Substantial discussion exists concerning the best land use options for mitigating greenhouse gas (GHG) emissions on marginal land. Emissions-mitigating land use options include displacement of fossil fuels via biofuel production and afforestation. Comparing C recovery dynamics under these different options is crucial to assessing the efficacy of offset programs. In this paper, we focus on forest recovery on marginal land, and show that there is substantial inaccuracy and discrepancy in the literature concerning carbon accumulation. We find that uncertainty in carbon accumulation occurs in estimations of carbon stocks and models of carbon dynamics over time. We suggest that analyses to date have been largely unsuccessful at determining reliable trends in site recovery due to broad land use categories, a failure to consider the effect of current and post-restoration management, and problems with meta-analysis. Understanding of C recovery could be greatly improved with increased data collection on pre-restoration site quality, prior land use history, and management practices as well as increased methodological standardization. Finally, given the current and likely future uncertainty in C dynamics, we recommend carbon mitigation potential should not be the only environmental service driving land use decisions on marginal lands. Full article
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)
Open AccessArticle Impacts of Frequent Burning on Live Tree Carbon Biomass and Demography in Post-Harvest Regrowth Forest
Forests 2014, 5(4), 802-821; doi:10.3390/f5040802
Received: 23 January 2014 / Revised: 18 March 2014 / Accepted: 9 April 2014 / Published: 22 April 2014
Cited by 4 | PDF Full-text (1116 KB) | HTML Full-text | XML Full-text
Abstract
The management of forest ecosystems to increase carbon storage is a global concern. Fire frequency has the potential to shift considerably in the future. These shifts may alter demographic processes and growth of tree species, and consequently carbon storage in forests. Examination of
[...] Read more.
The management of forest ecosystems to increase carbon storage is a global concern. Fire frequency has the potential to shift considerably in the future. These shifts may alter demographic processes and growth of tree species, and consequently carbon storage in forests. Examination of the sensitivity of forest carbon to the potential upper and lower extremes of fire frequency will provide crucial insight into the magnitude of possible change in carbon stocks associated with shifts in fire frequency. This study examines how tree biomass and demography of a eucalypt forest regenerating after harvest is affected by two experimentally manipulated extremes in fire frequency (i.e., ~3 year fire intervals vs. unburnt) sustained over a 23 year period. The rate of post-harvest biomass recovery of overstorey tree species, which constituted ~90% of total living tree biomass, was lower within frequently burnt plots than unburnt plots, resulting in approximately 20% lower biomass in frequently burnt plots by the end of the study. Significant differences in carbon biomass between the two extremes in frequency were only evident after >15–20 years of sustained treatment. Reduced growth rates and survivorship of smaller trees on the frequently burnt plots compared to unburnt plots appeared to be driving these patterns. The biomass of understorey trees, which constituted ~10% of total living tree biomass, was not affected by frequent burning. These findings suggest that future shifts toward more frequent fire will potentially result in considerable reductions in carbon sequestration across temperate forest ecosystems in Australia. Full article
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)
Open AccessArticle The Impact of Windstorm Damage in the Assessment of the Carbon Balance in Even-Aged Fagus sylvatica L. Stands
Forests 2014, 5(4), 784-801; doi:10.3390/f5040784
Received: 8 February 2014 / Revised: 18 March 2014 / Accepted: 9 April 2014 / Published: 21 April 2014
Cited by 3 | PDF Full-text (1339 KB) | HTML Full-text | XML Full-text
Abstract
Due to the fact that forest ecosystems can potentially mitigate the impact of climate change, the carbon balance of managed forests has caught the attention of a large scientific community. Some authors conclude that extending rotation lengths would actually favour the climate change
[...] Read more.
Due to the fact that forest ecosystems can potentially mitigate the impact of climate change, the carbon balance of managed forests has caught the attention of a large scientific community. Some authors conclude that extending rotation lengths would actually favour the climate change mitigation effect since more carbon would be stored in the biomass on the average. However, when the occurrence of catastrophic disturbances such as windstorms is not considered, the advantage of extending the rotation length might be overestimated for some species. In this study, we addressed this issue by coupling a growth model, a windstorm damage model and a carbon assessment tool. The evolution of an even-aged European beech (Fagus sylvatica L.) stand was simulated under three different rotation lengths. Simulations including stochastic windstorm events were run and compared with deterministic simulations with no catastrophic disturbance. Our results indicate that when disturbances caused by storms were not taken into account, the carbon balance was actually overestimated in some cases and that this overestimation increased with the rotation length. In our case study, omitting windstorm damage resulted in an overestimation as large as 8% for the longer rotation length. Nevertheless, when windstorm damage was taken into account in the simulation, the longer rotation length still stored more carbon on the average than shorter rotation lengths. However, the marginal gain in carbon storage induced by the increase of the rotation length was reduced. Full article
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)
Open AccessArticle Soil Organic Carbon Storage and Stability in the Aspen-Conifer Ecotone in Montane Forests in Utah, USA
Forests 2014, 5(4), 666-688; doi:10.3390/f5040666
Received: 24 January 2014 / Revised: 21 March 2014 / Accepted: 26 March 2014 / Published: 8 April 2014
Cited by 2 | PDF Full-text (1036 KB) | HTML Full-text | XML Full-text
Abstract
To assess the potential impact of conifer encroachment on soil organic carbon (SOC) dynamics and storage in montane aspen-conifer forests from the interior western US, we sampled mineral soils (0–15 cm) across the aspen-conifer ecotones in southern and northern Utah and quantified total
[...] Read more.
To assess the potential impact of conifer encroachment on soil organic carbon (SOC) dynamics and storage in montane aspen-conifer forests from the interior western US, we sampled mineral soils (0–15 cm) across the aspen-conifer ecotones in southern and northern Utah and quantified total SOC stocks, stable SOC (i.e., mineral-associated SOC (MoM)), labile SOC (i.e., light fraction (LF), decomposable (CO2 release during long-term aerobic incubations) and soluble SOC (hot water extractable organic carbon (HWEOC)). Total SOC storage (47.0 ± 16.5 Mg C ha−1) and labile SOC as LF (14.0 ± 7.10 Mg C ha−1), SOC decomposability (cumulative released CO2-C of 5.6 ± 3.8 g C g−1 soil) or HWEOC (0.6 ± 0.6 mg C g−1 soil) did not differ substantially with vegetation type, although a slight increase in HWEOC was observed with increasing conifer in the overstory. There were statistically significant differences (p = 0.035) in stable MoM storage, which was higher under aspen (31.2 ± 15.1 Mg C ha−1) than under conifer (22.8 ± 9.0 Mg C ha−1), with intermediate values under mixed (25.7 ± 8.8 Mg C ha−1). Texture had the greatest impact on SOC distribution among labile and stable fractions, with increasing stabilization in MoM and decreasing bio-availability of SOC with increasing silt + clay content. Only at lower silt + clay contents (40%–70%) could we discern the influence of vegetation on MoM content. This highlights the importance of chemical protection mechanisms for long-term C sequestration. Full article
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)
Open AccessArticle Carbon Stocks and Climate Change: Management Implications in Northern Arizona Ponderosa Pine Forests
Forests 2014, 5(4), 620-642; doi:10.3390/f5040620
Received: 16 January 2014 / Revised: 18 March 2014 / Accepted: 19 March 2014 / Published: 4 April 2014
Cited by 3 | PDF Full-text (1206 KB) | HTML Full-text | XML Full-text
Abstract
Researchers have observed climate-driven shifts of forest types to higher elevations in the Southwestern US and predict further migration coupled with large-scale mortality events proportional to increases in radiative forcing. Range contractions of forests are likely to impact the total carbon stored within
[...] Read more.
Researchers have observed climate-driven shifts of forest types to higher elevations in the Southwestern US and predict further migration coupled with large-scale mortality events proportional to increases in radiative forcing. Range contractions of forests are likely to impact the total carbon stored within a stand. This study examines the dynamics of Pinus ponderosa stands under three climate change scenarios in Northern Arizona using the Climate Forest Vegetation Simulator (Climate-FVS) model to project changes in carbon pools. A sample of 90 stands were grouped according to three elevational ranges; low- (1951 to 2194 m), mid- (2194 to 2499 m), and high- (2499 to 2682 m.) elevation stands. Growth, mortality, and carbon stores were simulated in the Climate-FVS over a 100 year timespan. We further simulated three management scenarios for each elevational gradient and climate scenario. Management included (1) a no-management scenario, (2) an intensive-management scenario characterized by thinning from below to a residual basal area (BA) of 18 m2/ha in conjunction with a prescribed burn every 10 years, and (3) a moderate-management scenario characterized by a thin-from-below treatment to a residual BA of 28 m2/ha coupled with a prescribed burn every 20 years. Results indicate that any increase in aridity due to climate change will produce substantial mortality throughout the elevational range of ponderosa pine stands, with lower elevation stands projected to experience the most devastating effects. Management was only effective for the intensive-management scenario; stands receiving this treatment schedule maintained moderately consistent levels of basal area and demonstrated a higher level of resilience to climate change relative to the two other management scenarios. The results of this study indicate that management can improve resiliency to climate change, however, resource managers may need to employ more intensive thinning treatments than currently proposed to achieve the best results. Full article
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)
Open AccessArticle Nitrogen and Carbon Biogeochemistry in Forest Sites along an Indirect Urban–Rural Gradient in Southeastern Michigan
Forests 2014, 5(4), 643-665; doi:10.3390/f5040643
Received: 16 January 2014 / Revised: 27 February 2014 / Accepted: 19 March 2014 / Published: 4 April 2014
Cited by 2 | PDF Full-text (1053 KB) | HTML Full-text | XML Full-text
Abstract
To evaluate the impacts of urbanization on soil and vegetation in protected forest areas, 12 forest sites in Southeastern Michigan USA were studied in an indirect urban–rural gradient. Field study plots were established in forest edge zones of each protected area. Significant findings
[...] Read more.
To evaluate the impacts of urbanization on soil and vegetation in protected forest areas, 12 forest sites in Southeastern Michigan USA were studied in an indirect urban–rural gradient. Field study plots were established in forest edge zones of each protected area. Significant findings were that in these edge zones of protected areas: (a) soil nitrogen tended to be greater where surrounding housing density was greater; (b) overstory woody biomass and basal area were greater where surrounding housing density was greater; and (c) the study region overall exhibited low soil carbon content (mean 2.71%) and relatively high soil nitrogen content (mean 0.20%), yielding a surprisingly low surface soil C/N ratio (mean 13.4). Overall, 24 woody plant genera were encountered, with the three genera Acer, Carya and Quercus accounting for 83.7% of total biomass and 74.1% of total basal area. No significant relationships were observed between housing density and soil C/N ratio or between housing density and foliar N. Results indicate that a halo of urban-ecological impacts exists in the landscape of Southeastern Michigan, similar to previously studied linear urban–rural gradients in other regions. Full article
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)
Open AccessArticle Soil Carbon Dynamics in Residential Lawns Converted from Appalachian Mixed Oak Stands
Forests 2014, 5(3), 425-438; doi:10.3390/f5030425
Received: 7 January 2014 / Revised: 4 March 2014 / Accepted: 5 March 2014 / Published: 19 March 2014
Cited by 4 | PDF Full-text (659 KB) | HTML Full-text | XML Full-text
Abstract
The conversion of unmanaged forest land to homesites dominated by managed turfgrass lawns continues to increase and has large potential impacts on biogeochemical cycling. The conversion process from forest into mowed turfgrass involves a major disturbance to soil properties and shift in ecological
[...] Read more.
The conversion of unmanaged forest land to homesites dominated by managed turfgrass lawns continues to increase and has large potential impacts on biogeochemical cycling. The conversion process from forest into mowed turfgrass involves a major disturbance to soil properties and shift in ecological conditions, which could affect soil physical, chemical and biological properties, including carbon sequestration. We conducted a study on 64 residential properties, ranging from 5 to 52 years since development, to compare soil carbon content, bulk density, temperature, and moisture, between lawns and the surrounding forests from which they were converted. Homeowners were surveyed on lawn management practices and environmental attitudes, and the relationships between these and soil properties were investigated. Soil bulk density was significantly higher in the upper 10 cm of lawns compared to adjacent forest (35% higher at 0–5 cm and 15.6% higher at 5–10 cm). Total soil C content to 30 cm of lawn (6.5 kg C m−2) and forest (7.1 kg C m−2) marginally differed (p = 0.08), and lawns contained significantly greater C (0.010 g C cm−3) than forests (0.007 g C cm−3) at the 20–30 cm soil depth (p = 0.0137). In the lawns, there was a positive relationship between time since development and surface (0–5 cm) C concentration (p = 0.04), but a negative relationship at 20–30 cm (p = 0.03). Surface soils also exhibited a positive correlation between fertilization frequency and C (p = 0.0005) content. Lawn management intensity (fertilizer and pesticide use) increased with environmental commitment. Homeowners with a higher environmental commitment had lawns with greater soil carbon levels. Our results indicate that converting unmanaged Appalachian hardwood forest into managed, turfgrass-dominated residential landscapes may affect C depth distribution, but results in little change in total soil carbon sequestration in the upper 30 cm. Full article
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)
Open AccessArticle Individual-Based Allometric Equations Accurately Measure Carbon Storage and Sequestration in Shrublands
Forests 2014, 5(2), 309-324; doi:10.3390/f5020309
Received: 22 January 2014 / Revised: 14 February 2014 / Accepted: 14 February 2014 / Published: 21 February 2014
Cited by 4 | PDF Full-text (1046 KB) | HTML Full-text | XML Full-text
Abstract
Many studies have quantified uncertainty in forest carbon (C) storage estimation, but there is little work examining the degree of uncertainty in shrubland C storage estimates. We used field data to simulate uncertainty in carbon storage estimates from three error sources: (1) allometric
[...] Read more.
Many studies have quantified uncertainty in forest carbon (C) storage estimation, but there is little work examining the degree of uncertainty in shrubland C storage estimates. We used field data to simulate uncertainty in carbon storage estimates from three error sources: (1) allometric biomass equations; (2) measurement errors of shrubs harvested for the allometry; and (3) measurement errors of shrubs in survey plots. We also assessed uncertainty for all possible combinations of these error sources. Allometric uncertainty had the greatest independent effect on C storage estimates for individual plots. The largest error arose when all three error sources were included in simulations (where the 95% confidence interval spanned a range equivalent to 40% of mean C storage). Mean C sequestration (1.73 Mg C ha–1 year–1) exceeded the margin of error produced by the simulated sources of uncertainty. This demonstrates that, even when the major sources of uncertainty were accounted for, we were able to detect relatively modest gains in shrubland C storage. Full article
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)
Open AccessArticle White Spruce Plantations on Abandoned Agricultural Land: Are They More Effective as C Sinks than Natural Succession?
Forests 2013, 4(4), 1141-1157; doi:10.3390/f4041141
Received: 16 October 2013 / Revised: 21 November 2013 / Accepted: 3 December 2013 / Published: 11 December 2013
Cited by 3 | PDF Full-text (726 KB) | HTML Full-text | XML Full-text
Abstract
The objective of this study was to compare organic carbon (C) accumulation in plantations (PL) and natural succession (NS) established on fallow lands along a 50-year chronosequence in the eastern mixed forest subzone of Quebec (Canada). Above- and below-ground woody biomass were estimated
[...] Read more.
The objective of this study was to compare organic carbon (C) accumulation in plantations (PL) and natural succession (NS) established on fallow lands along a 50-year chronosequence in the eastern mixed forest subzone of Quebec (Canada). Above- and below-ground woody biomass were estimated from vegetation measurement surveys, and litter and soil (0–50 cm depth) C from samplings. At the year of abandonment, total C content of both PL and NS sites averaged 100 ± 13 Mg C ha−1. Over 50 years, total C content doubled on NS sites and tripled on PL sites (217.9 ± 28.7 vs. 285.7 ± 31.0 Mg ha−1) with respect to fallow land. On NS sites, the new C stocks accumulated entirely in the vegetation. On PL sites, C accumulated mostly in the vegetation and to a lesser extent in the litter, whereas it decreased by a third in the soil. As a result, the net C accumulation rate was 1.7 ± 0.7 Mg ha−1 yr−1 greater on PL sites than on NS sites over 50 years. By the 23rd year, PL sites became greater net C sinks than NS sites in the fallow lands of the study area, even with the loss of soil C. Full article
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)
Open AccessArticle Potential for Climate Change Mitigation in Degraded Forests: A Study from La Primavera, México
Forests 2013, 4(4), 1032-1054; doi:10.3390/f4041032
Received: 23 September 2013 / Revised: 8 November 2013 / Accepted: 15 November 2013 / Published: 22 November 2013
Cited by 3 | PDF Full-text (689 KB) | HTML Full-text | XML Full-text
Abstract
Forests contribute to climate change mitigation by removing atmospheric carbon dioxide and storing it in biomass and other carbon pools. Additionally, since appropriate forest management can reduce emissions from deforestation and forest degradation, it is important to estimate the magnitude of these services
[...] Read more.
Forests contribute to climate change mitigation by removing atmospheric carbon dioxide and storing it in biomass and other carbon pools. Additionally, since appropriate forest management can reduce emissions from deforestation and forest degradation, it is important to estimate the magnitude of these services to include them into climate policy. We used a forest inventory stratified by canopy cover in the oak-pine forest of La Primavera Biosphere Reserve in México (30,500 ha), to assess the potential provision of forest carbon services. Inventory results were used in combination with a Landsat image to estimate carbon stocks in arboreal biomass. Potential carbon removals were calculated from published allometric equations and models estimating tree growth rates, for enhancements in forested areas and for reforestation/afforestation. Carbon stocks estimated in arboreal biomass at the time of the inventory were 4.16 MtCO2eq (3.42–4.89). The potential for further carbon sequestration and enhancement could take the level of stocks up to 9.77 MtCO2eq (7.66–11.89, 95% confidence interval); previous fires have degraded carbon stocks below their natural potential. The results present a gradient of carbon stocks for different degradation levels and are consistent with national and international estimates and previous local research. The baseline for the estimation of reduced emissions is critical for assessing the overall contribution of forests to mitigate climate change. The local baseline of emissions might be around 1% according to historical data; however, when enhancements and reduced emissions are valuated together, a baseline of 3.7% is required to prevent the creation of perverse incentives favouring previously degraded areas; considering these figures for reduced emissions, the yearly carbon services provided by La Primavera, including enhancements, sequestration and reduced emissions, could be between 169.4 ktCO2eq/year (134.8–204.5) and 282.1 ktCO2eq/year (228.2–337.1), respectively. Over a period of 60 years, this would be equivalent to 2.4 and 4.1 times the magnitude of mean standing stocks at the time of the inventory. If incentive-based mechanisms are used to maintain and enhance forest carbon services and perverse incentives are to be avoided, a balanced mix of incentives and controls is needed. Full article
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)

Journal Contact

MDPI AG
Forests Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
forests@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Forests
Back to Top