Forests 2014, 5(2), 309-324; doi:10.3390/f5020309
Article

Individual-Based Allometric Equations Accurately Measure Carbon Storage and Sequestration in Shrublands

Received: 22 January 2014; in revised form: 14 February 2014 / Accepted: 14 February 2014 / Published: 21 February 2014
(This article belongs to the Special Issue Forest and Wood Vegetation Carbon Stores and Sequestration)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Many studies have quantified uncertainty in forest carbon (C) storage estimation, but there is little work examining the degree of uncertainty in shrubland C storage estimates. We used field data to simulate uncertainty in carbon storage estimates from three error sources: (1) allometric biomass equations; (2) measurement errors of shrubs harvested for the allometry; and (3) measurement errors of shrubs in survey plots. We also assessed uncertainty for all possible combinations of these error sources. Allometric uncertainty had the greatest independent effect on C storage estimates for individual plots. The largest error arose when all three error sources were included in simulations (where the 95% confidence interval spanned a range equivalent to 40% of mean C storage). Mean C sequestration (1.73 Mg C ha–1 year–1) exceeded the margin of error produced by the simulated sources of uncertainty. This demonstrates that, even when the major sources of uncertainty were accounted for, we were able to detect relatively modest gains in shrubland C storage.
Keywords: afforestation; emissions management; emissions trading; greenhouse gasses; REDD+; succession
PDF Full-text Download PDF Full-Text [1046 KB, uploaded 21 February 2014 16:25 CET]

Export to BibTeX |
EndNote


MDPI and ACS Style

Mason, N.W.; Beets, P.N.; Payton, I.; Burrows, L.; Holdaway, R.J.; Carswell, F.E. Individual-Based Allometric Equations Accurately Measure Carbon Storage and Sequestration in Shrublands. Forests 2014, 5, 309-324.

AMA Style

Mason NW, Beets PN, Payton I, Burrows L, Holdaway RJ, Carswell FE. Individual-Based Allometric Equations Accurately Measure Carbon Storage and Sequestration in Shrublands. Forests. 2014; 5(2):309-324.

Chicago/Turabian Style

Mason, Norman W.; Beets, Peter N.; Payton, Ian; Burrows, Larry; Holdaway, Robert J.; Carswell, Fiona E. 2014. "Individual-Based Allometric Equations Accurately Measure Carbon Storage and Sequestration in Shrublands." Forests 5, no. 2: 309-324.

Forests EISSN 1999-4907 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert