Special Issue "Multi-Level Converters"

Quicklinks

A special issue of Electronics (ISSN 2079-9292).

Deadline for manuscript submissions: closed (30 April 2015)

Special Issue Editor

Guest Editor
Prof. Dr. Bimal K. Bose
Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN 37996-2100, USA
Website: http://web.eecs.utk.edu/~bose
Phone: 865-974-8398
Interests: power electronics; renewable energy systems; electric motor drives; fuzzy logic and neural network applications; electric and hybrid vehicles

Special Issue Information

Dear Colleagues,

Multi-level voltage source converters are characterized by having more than two voltage levels at the output compared to traditional converters which have two voltage levels. This class of converters is used in high voltage, high power (multi-MWs) applications, replacing the classical thyristor-based cycloconverters, load-commutated inverters (LCI) and current-fed converters. Such applications include induction and synchronous motor drives for various industrial applications, high voltage dc (HVDC) systems, flexible ac transmission systems (FACTS), static VAR compensators (SVC), active filters (AF), photovoltaic and wind generation systems, etc. The standard topologies of these converters are diode-clamped neutral-point clamped converter (NPC), flying capacitor (FC) converter and modular multi-level converters (MMC). The MMCs are again sub-classified into cascaded H-bridge (CHB) and cascaded half-bridge topologies. The general advantages of multi-level converters are the easy static and dynamic voltage sharing of the devices (IGBT or IGCT), improved PWM quality, reduced dv/dt and di/dt and improved reliability, compared to the two-level high voltage converters with a large number of devices in series. The MMC has the additional advantages of inherent low device voltage rating and a fault-tolerant capability. Considering their importance, multi-level converters are undergoing intense technological developments as revealed in recent literature relating to advanced topology development, modulation algorithms, control strategies, fault diagnostics and fault-tolerant controls. With the advent of large bandgap (SiC and GaN) power semiconductor devices with high voltage and high power, multi-level converters for industrial applications will be easily extended to a much higher range of power.

Prof. Dr. Bimal K. Bose
Guest Editor

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Electronics is an international peer-reviewed Open Access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. For the first couple of issues the Article Processing Charge (APC) will be waived for well-prepared manuscripts. English correction and/or formatting fees of 250 CHF (Swiss Francs) will be charged in certain cases for those articles accepted for publication that require extensive additional formatting and/or English corrections.


Keywords

  • high power applications
  • high voltage dc (HVDC) transmission
  • flexible ac transmission system (FACTS)
  • industrial ac drives
  • photovoltaic system
  • wind generation system
  • fault-tolerant control of converter
  • large bandgap devices

Published Papers (4 papers)

Download All Papers
Sort by:
Display options:
Select articles Export citation of selected articles as:
Select/unselect all
Displaying article 1-4
p. 339-358
by
Electronics 2015, 4(2), 339-358; doi:10.3390/electronics4020339
Received: 25 April 2015 / Accepted: 9 June 2015 / Published: 15 June 2015
Show/Hide Abstract | PDF Full-text (3070 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Multi-Level Converters)
p. 311-328
by ,  and
Electronics 2015, 4(2), 311-328; doi:10.3390/electronics4020311
Received: 30 December 2014 / Revised: 15 May 2015 / Accepted: 27 May 2015 / Published: 3 June 2015
Show/Hide Abstract | PDF Full-text (1305 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Multi-Level Converters)
abstract graphic
p. 283-302
by ,  and
Electronics 2015, 4(2), 283-302; doi:10.3390/electronics4020283
Received: 23 March 2015 / Revised: 2 May 2015 / Accepted: 4 May 2015 / Published: 11 May 2015
Show/Hide Abstract | PDF Full-text (1828 KB)
(This article belongs to the Special Issue Multi-Level Converters)
abstract graphic
p. 239-260
by , ,  and
Electronics 2015, 4(2), 239-260; doi:10.3390/electronics4020239
Received: 30 January 2015 / Accepted: 2 April 2015 / Published: 20 April 2015
Show/Hide Abstract | PDF Full-text (1200 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Multi-Level Converters)
abstract graphic
Select/unselect all
Displaying article 1-4
Select articles Export citation of selected articles as:

Last update: 30 October 2014

Electronics EISSN 2079-9292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert