NAD+ Metabolism and Signaling

A special issue of Cells (ISSN 2073-4409).

Deadline for manuscript submissions: closed (30 June 2015) | Viewed by 32450

Special Issue Editor

Faculty of Medicine and Health, University of Sydney, Sydney, Australia
Interests: oxidative stress; Lifestyle medicine; NAD metabolism; Kynurenine pathway; neurodegenerative dementia

Special Issue Information

Dear Colleagues,

Beginning early in the 20th century, a significant body of research has been generated describing the complex metabolism and multiple functions of the ubiquitous molecule, nicotinamide adenine dinucleotide (NAD+). NAD+ has been shown to be critical to the viability of every living cell, with functions ranging from its well-known roles in redox balance and enzyme activity to the more recent discoveries of immune signaling and DNA modulation and repair.

This Special Issue offers an Open Access forum that endeavors to bring together a collection of original research and review articles that explores exciting recent developments in our understanding of this eclectic, but essential molecule. We therefore invite contributions by authors to cover topics relating to NAD+, including cell signaling, regulation of gene expression and cellular apoptosis, DNA repair, cellular longevity, and NAD+ synthesis, recycling, and metabolism.  We look forward to this Special Issue being a valued resource, which stimulates yet further research into this exciting field.

Dr. Ross Grant
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


Keywords

  • NAD+
  • Tryptophan
  • NAMPT
  • NMN
  • vitamin B3
  • niacin
  • PARP
  • Sirtuin
  • Sirt
  • CD38
  • longevity

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

2613 KiB  
Article
Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays
by Vasily A. Aleshin, Artem V. Artiukhov, Henry Oppermann, Alexey V. Kazantsev, Nikolay V. Lukashev and Victoria I. Bunik
Cells 2015, 4(3), 427-451; https://doi.org/10.3390/cells4030427 - 21 Aug 2015
Cited by 31 | Viewed by 7763
Abstract
Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. [...] Read more.
Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay. Full article
(This article belongs to the Special Issue NAD+ Metabolism and Signaling)
Show Figures

Figure 1

Review

Jump to: Research

1199 KiB  
Review
Intracellular Mono-ADP-Ribosylation in Signaling and Disease
by Mareike Bütepage, Laura Eckei, Patricia Verheugd and Bernhard Lüscher
Cells 2015, 4(4), 569-595; https://doi.org/10.3390/cells4040569 - 25 Sep 2015
Cited by 72 | Viewed by 13301
Abstract
A key process in the regulation of protein activities and thus cellular signaling pathways is the modification of proteins by post-translational mechanisms. Knowledge about the enzymes (writers and erasers) that attach and remove post-translational modifications, the targets that are modified and the functional [...] Read more.
A key process in the regulation of protein activities and thus cellular signaling pathways is the modification of proteins by post-translational mechanisms. Knowledge about the enzymes (writers and erasers) that attach and remove post-translational modifications, the targets that are modified and the functional consequences elicited by specific modifications, is crucial for understanding cell biological processes. Moreover detailed knowledge about these mechanisms and pathways helps to elucidate the molecular causes of various diseases and in defining potential targets for therapeutic approaches. Intracellular adenosine diphosphate (ADP)-ribosylation refers to the nicotinamide adenine dinucleotide (NAD+)-dependent modification of proteins with ADP-ribose and is catalyzed by enzymes of the ARTD (ADP-ribosyltransferase diphtheria toxin like, also known as PARP) family as well as some members of the Sirtuin family. Poly-ADP-ribosylation is relatively well understood with inhibitors being used as anti-cancer agents. However, the majority of ARTD enzymes and the ADP-ribosylating Sirtuins are restricted to catalyzing mono-ADP-ribosylation. Although writers, readers and erasers of intracellular mono-ADP-ribosylation have been identified only recently, it is becoming more and more evident that this reversible post-translational modification is capable of modulating key intracellular processes and signaling pathways. These include signal transduction mechanisms, stress pathways associated with the endoplasmic reticulum and stress granules, and chromatin-associated processes such as transcription and DNA repair. We hypothesize that mono-ADP-ribosylation controls, through these different pathways, the development of cancer and infectious diseases. Full article
(This article belongs to the Special Issue NAD+ Metabolism and Signaling)
Show Figures

Figure 1

1576 KiB  
Review
NAD+-Metabolizing Ectoenzymes in Remodeling Tumor–Host Interactions: The Human Myeloma Model
by Alberto L. Horenstein, Antonella Chillemi, Valeria Quarona, Andrea Zito, Ilaria Roato, Fabio Morandi, Danilo Marimpietri, Marina Bolzoni, Denise Toscani, Robert J. Oldham, Massimiliano Cuccioloni, A. Kate Sasser, Vito Pistoia, Nicola Giuliani and Fabio Malavasi
Cells 2015, 4(3), 520-537; https://doi.org/10.3390/cells4030520 - 17 Sep 2015
Cited by 83 | Viewed by 10642
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential co-enzyme reported to operate both intra- and extracellularly. In the extracellular space, NAD+ can elicit signals by binding purinergic P2 receptors or it can serve as the substrate for a chain of ectoenzymes. [...] Read more.
Nicotinamide adenine dinucleotide (NAD+) is an essential co-enzyme reported to operate both intra- and extracellularly. In the extracellular space, NAD+ can elicit signals by binding purinergic P2 receptors or it can serve as the substrate for a chain of ectoenzymes. As a substrate, it is converted to adenosine (ADO) and then taken up by the cells, where it is transformed and reincorporated into the intracellular nucleotide pool. Nucleotide-nucleoside conversion is regulated by membrane-bound ectoenzymes. CD38, the main mammalian enzyme that hydrolyzes NAD+, belongs to the ectoenzymatic network generating intracellular Ca2+-active metabolites. Within this general framework, the extracellular conversion of NAD+ can vary significantly according to the tissue environment or pathological conditions. Accumulating evidence suggests that tumor cells exploit such a network for migrating and homing to protected areas and, even more importantly, for evading the immune response. We report on the experience of this lab to exploit human multiple myeloma (MM), a neoplastic expansion of plasma cells, as a model to investigate these issues. MM cells express high levels of surface CD38 and grow in an environment prevalently represented by closed niches hosted in the bone marrow (BM). An original approach of this study derives from the recent use of the clinical availability of therapeutic anti-CD38 monoclonal antibodies (mAbs) in perturbing tumor viability and enzymatic functions in conditions mimicking what happens in vivo. Full article
(This article belongs to the Special Issue NAD+ Metabolism and Signaling)
Show Figures

Figure 1

Back to TopTop