Feed Intervention in Livestock Nutrition: Effects on Gut Microbial Ecology

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Animal Nutrition".

Deadline for manuscript submissions: closed (30 November 2021) | Viewed by 30113

Special Issue Editors


E-Mail Website
Guest Editor
Department of Animal Science, University of Lleida, 25198 Lleida, Spain
Interests: microbial ecology; ruminant nutrition; control of greenhouse gases; precision feeding

E-Mail Website
Guest Editor
Department of Animal Science, University of Lleida, 25198 Lleida, Spain
Interests: nutrient absorption and metabolism; microbial fermentation and yield; Ammonia and greenhouse gas emissions

E-Mail Website
Guest Editor
Department of Animal Science, University of Lleida, 25198 Lleida, Spain
Interests: ruminant and pig nutrition, rumen fermentation, gut microbiota, greenhouse gas emissions

Special Issue Information

Dear Colleagues,

Over the last decades, livestock nutrition has developed into a valuable tool to control disease and environmental impact. After the ban on antimicrobials as growth promoters in the EU, and the development of new technologies to boost our understanding of the effects of microbiota on the animal host, relevant research linked feed intervention (by feed additives, early intervention, and substitutive sources of feeds) to microbiota and their effects on animal health and performance. With this Special Issue, we intend to collect significant research related to both foregut and hindgut digestive systems.

Innovative papers from different research areas, such as immunology, precision feeding, microbiology, and environmental and animal science, are invited to this Special Issue, with the aim of bringing together the latest findings in the use of feed interventions on livestock. Interdisciplinary studies will be taken into account, especially those regarding (but not limited to):

  1. Precision livestock farming
  2. Early interventions on gut microbiota
  3. Feed additives as substitutes of antimicrobials
  4. Use of alternative sources of feeds

Dr. Gabriel De La Fuente
Dr. Joaquim Balcells
Dr. Ahmad Reza Seradj
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • feed additives
  • precision feeding
  • early intervention
  • environmental impact
  • gut microbiota

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 2276 KiB  
Article
Effects of Dietary Tributyrin on Growth Performance, Biochemical Indices, and Intestinal Microbiota of Yellow-Feathered Broilers
by Li Gong, Gengsheng Xiao, Liwei Zheng, Xia Yan, Qien Qi, Cui Zhu, Xin Feng, Weilong Huang and Huihua Zhang
Animals 2021, 11(12), 3425; https://doi.org/10.3390/ani11123425 - 1 Dec 2021
Cited by 13 | Viewed by 2103
Abstract
This study aimed to evaluate the effects of tributyrin on growth performance, biochemical indices and intestinal microbiota of yellow-feathered broilers. 360 one-day-old chicks were randomly allocated to three treatments with six replicates of 20 chicks each, including a normal control group (NC), an [...] Read more.
This study aimed to evaluate the effects of tributyrin on growth performance, biochemical indices and intestinal microbiota of yellow-feathered broilers. 360 one-day-old chicks were randomly allocated to three treatments with six replicates of 20 chicks each, including a normal control group (NC), an antibiotic group (PC), and a tributyrin (250 mg/kg) group (TB) for 63 days. The results showed that compared with the control, the feed conversion ratio (FCR) in the TB group decreased during the d22 to d42 (p < 0.05) and overall, the final weight and FCR of broilers tended to increase and decrease, respectively. Moreover, the TB group showed the highest creatine concentrations at the entire period (p < 0.05). TB treatment increased the Bacteroidetes relative abundance and decreased Firmicutes. Principal coordinates analysis yielded clear clustering of the three groups. Linear discriminant analysis effect size analysis found seven differentially abundant taxa in the TB group, including several members of Bacteroidedetes. The relative abundance of Eisenbergiella, Phascolarctobacterium, Megasphaera and Intestinimonas increased in tributyrin-treated broilers. Spearman correlation analysis identified a correlation between Eisenbergiella abundance and overall feed efficiency. These results demonstrated that tributyrin could improve the growth performance by modulating blood biochemical indices and the cecal microflora composition of broilers. Full article
Show Figures

Figure 1

20 pages, 2381 KiB  
Article
The Effect of Feeding Restriction on the Microbiota and Metabolome Response in Late-Phase Laying Hens
by Clara Ajeng Artdita, Yi-Ru Zhuang, Tzu-Yu Liu, Chih-Yuan Cheng, Felix Shih-Hsiang Hsiao and Yuan-Yu Lin
Animals 2021, 11(11), 3043; https://doi.org/10.3390/ani11113043 - 24 Oct 2021
Cited by 9 | Viewed by 2221
Abstract
This study investigated cecal bacterial community profile, cecal and serum metabolites, and its biosynthesis pathway in late-phase laying hens during 6 weeks feeding restriction (FR), using 16S rDNA as gene sequencing and non-targeted LC-MS/MS as metabolomics approach. We used three groups (ad libitum, [...] Read more.
This study investigated cecal bacterial community profile, cecal and serum metabolites, and its biosynthesis pathway in late-phase laying hens during 6 weeks feeding restriction (FR), using 16S rDNA as gene sequencing and non-targeted LC-MS/MS as metabolomics approach. We used three groups (ad libitum, FR20, and FR40). FR can reduce excessive fat in late-phase laying hens, while egg production rate is not affected, except for the FR40 group. In phylum level, FR20 had more population of Bacteriodetes and Firmicutes amongst groups. The same result is at genus level, FR20 were higher of the predominant genus (Bacteroides and Rikenellaceae_RC9_gut_group). Both of FR20 and FR40 reduced Proteobacteria as potential pathogenic bacteria. Non-targeted metabolomic analysis revealed that FR20 modified 20 metabolites in cecal and 10 metabolites in serum of laying hens, whereas 48 cecal metabolites and 31 serum metabolites has revealed in FR40. KEGG assay showed FR20 and FR40 upregulated lipid, carbohydrate, amino acid, nucleic acid pathway, and FR40 modified steroid metabolism in cecal analysis. In serum, only FR40 modified lipid, amino acid pathway, and carbohydrate biosynthesis were shown. This study showed that FR during late-phase laying hens altered the microbiome composition, modified metabolites profile and biosynthesis of the cecal as well as serum. Full article
Show Figures

Figure 1

16 pages, 838 KiB  
Article
Effects of Dietary Glucose Oxidase Supplementation on the Performance, Apparent Ileal Amino Acids Digestibility, and Ileal Microbiota of Broiler Chickens
by Yong Meng, Haonan Huo, Yang Zhang, Shiping Bai, Ruisheng Wang, Keying Zhang, Xuemei Ding, Jianping Wang, Qiufeng Zeng, Huanwei Peng and Yue Xuan
Animals 2021, 11(10), 2909; https://doi.org/10.3390/ani11102909 - 8 Oct 2021
Cited by 5 | Viewed by 2073
Abstract
This study aimed to investigate the effects of glucose oxidase (GOD) supplementation on growth performance, apparent ileal digestibility (AID) of nutrients, intestinal morphology, and short-chain fatty acids (SCFAs) and microbiota in the ileum of broilers. Six hundred 1-day-old male broilers were randomly allotted [...] Read more.
This study aimed to investigate the effects of glucose oxidase (GOD) supplementation on growth performance, apparent ileal digestibility (AID) of nutrients, intestinal morphology, and short-chain fatty acids (SCFAs) and microbiota in the ileum of broilers. Six hundred 1-day-old male broilers were randomly allotted to four groups of 10 replicates each with 15 birds per replicate cage. The four treatments included the basal diet without antibiotics (Control) and the basal diet supplemented with 250, 500, or 1000 U GOD/kg diet (E250, E500 or E1000). The samples of different intestinal segments, ileal mucosa, and ileal digesta were collected on d 42. Dietary GOD supplementation did not affect daily bodyweight gain (DBWG) and the ratio of feed consumption and bodyweight gain (FCR) during d 1-21 (p > 0.05); however, the E250 treatment increased DBWG (p = 0.03) during d 22–42 as compared to control. Dietary GOD supplementation increased the AIDs of arginine, isoleucine, lysine, methionine, threonine, cysteine, serine, and tyrosine (p < 0.05), while no significant difference was observed among the GOD added groups. The E250 treatment increased the villus height of the jejunum and ileum. The concentrations of secreted immunoglobulin A (sIgA) in ileal mucosa and the contents of acetic acid and butyric acid in ileal digesta were higher in the E250 group than in the control (p < 0.05), whereas no significant differences among E500, E1000, and control groups. The E250 treatment increased the richness of ileal microbiota, but E500 and E100 treatment did not significantly affect it. Dietary E250 treatment increased the relative abundance of Firmicutes phylum and Lactobacillus genus, while it decreased the relative abundance of genus Escherichina-Shigella (p < 0.05). Phylum Fusobacteria only colonized in the ileal digesta of E500 treated broilers and E500 and E1000 did not affect the relative abundance of Firmicutes phylum and Lactobacillus and Escherichina-Shigella genera as compared to control. These results suggested that dietary supplementation of 250 U GOD/kg diet improves the growth performance of broilers during d 22–42, which might be associated with the alteration of the intestinal morphology, SCFAs composition, and ileal microbiota composition. Full article
Show Figures

Figure 1

16 pages, 1714 KiB  
Article
The Impact of Genetics on Gut Microbiota of Growing and Fattening Pigs under Moderate N Restriction
by Laura Sarri, Sandra Costa-Roura, Joaquim Balcells, Ahmad Reza Seradj and Gabriel de la Fuente
Animals 2021, 11(10), 2846; https://doi.org/10.3390/ani11102846 - 29 Sep 2021
Cited by 2 | Viewed by 1934
Abstract
Characterization of intestinal microbiota is of great interest due to its relevant impact on growth, feed efficiency and pig carcass quality. Microbial composition shifts along the gut, but it also depends on the host (i.e., age, genetic background), diet composition and environmental conditions. [...] Read more.
Characterization of intestinal microbiota is of great interest due to its relevant impact on growth, feed efficiency and pig carcass quality. Microbial composition shifts along the gut, but it also depends on the host (i.e., age, genetic background), diet composition and environmental conditions. To simultaneously study the effects of producing type (PT), production phase (PP) and dietary crude protein (CP) content on microbial populations, 20 Duroc pigs and 16 crossbred pigs (F2), belonging to growing and fattening phases, were used. Half of the pigs of each PT were fed a moderate CP restriction (2%). After sacrifice, contents of ileum, cecum and distal colon were collected for sequencing procedure. Fattening pigs presented higher microbial richness than growing pigs because of higher maturity and stability of the community. The F2 pigs showed higher bacterial alpha diversity and microbial network complexity (cecum and colon), especially in the fattening phase, while Duroc pigs tended to have higher Firmicutes/Bacteroidetes ratio in cecum segment. Lactobacillus was the predominant genus, and along with Streptococcus and Clostridium, their relative abundance decreased throughout the intestine. Although low CP diet did not alter the microbial diversity, it increased interaction network complexity. These results have revealed that the moderate CP restriction had lower impact on intestinal microbiota than PP and PT of pigs. Full article
Show Figures

Figure 1

17 pages, 4258 KiB  
Article
Effect of Dietary Clostridium butyricum Supplementation on Growth Performance, Intestinal Barrier Function, Immune Function, and Microbiota Diversity of Pekin Ducks
by Yanhan Liu, Cun Liu, Keying An, Xiaowei Gong and Zhaofei Xia
Animals 2021, 11(9), 2514; https://doi.org/10.3390/ani11092514 - 26 Aug 2021
Cited by 11 | Viewed by 2627
Abstract
Clostridium butyricum (C. butyricum) is increasingly being used to test the promotion of the gut health of animals. However, the modes of action for such applications for waterfowl remain unclear. Thus, we investigated whether or not intestinal barrier function, immune-related gene [...] Read more.
Clostridium butyricum (C. butyricum) is increasingly being used to test the promotion of the gut health of animals. However, the modes of action for such applications for waterfowl remain unclear. Thus, we investigated whether or not intestinal barrier function, immune-related gene expression, and the diversity of the intestinal microbiota in Pekin ducks varied under C. butyricum supplementation. A total of 500 ducks were randomly assigned into five treatments supplemented with basal diets containing: either 0 (group Control), 200 (group CB200), 400 (group CB400) and 600 (group CB600) mg/kg C. butyricum or 150 mg/kg aureomycin (group A150) for 42 days. In comparison with the control group, C. butyricum supplementation enhanced the growth performance and intestinal villus height of Pekin ducks at 42 d. Serum immune indexes and fecal short-chain fatty acids (SCFAs) were all improved at both 21 d and 42 d after C. butyricum addition. The mRNA expression levels of Mucin2, Zonula occludens-1 (ZO-1), Caudin-3, and Occludin increased at 21 d and 42 d and the mRNA expression levels of IL-4 and IL-10 only increased at 42 d after C. butyricum addition. Dietary C. butyricum also resulted in an increase in the number of diversities of operational taxonomic units (OTUs), and an increase in the α-diversity of intestinal microbiota. The addition of C. butyricum altered the composition of the intestinal microbiota from 21 d to 42 d. The relative abundance of Firmicutes and Bacteroidetes showed little changes among groups; however, the relative abundance of Firmicutes/Bacteroidetes were found to have been significantly different between the 21 d and 42 d. C. butyricum administration improved the intestinal health of Pekin ducks by increasing the diversity of intestinal microbiota, enhancing the SCFAs contents, and strengthening the intestinal barrier function and immune systems. The optimal dietary supplementation dosage was recommended as 400 mg/kg in the diet. Full article
Show Figures

Figure 1

19 pages, 1016 KiB  
Article
Flaxseed Oil and Heated Flaxseed Supplements Have Different Effects on Lipid Deposition and Ileal Microbiota in Albas Cashmere Goats
by Shulin Liu, Xue Wang, Yinhao Li, Binlin Shi, Xiaoyu Guo, Yanli Zhao and Sumei Yan
Animals 2021, 11(3), 790; https://doi.org/10.3390/ani11030790 - 12 Mar 2021
Cited by 9 | Viewed by 2114
Abstract
The present study investigated the effect of flaxseed grain or flaxseed oil on ileal microbiota and lipid deposition of cashmere goats. Sixty kid goats (average body weight 18.6 ± 0.1 kg) were allocated to three treatments, fed for 90 days, with control treatment: [...] Read more.
The present study investigated the effect of flaxseed grain or flaxseed oil on ileal microbiota and lipid deposition of cashmere goats. Sixty kid goats (average body weight 18.6 ± 0.1 kg) were allocated to three treatments, fed for 90 days, with control treatment: basal diet (CON, total-mixed ration), experimental treatment: basal diet with added flaxseed oil (LNO), experimental treatment: basal diet with added heated flaxseed grain (HLS). The final body weight, body weight gain, the weight of kidney fat, omental fat, tail fat, and fat tissue, the activity of fatty acid synthetase, acetyl-coa carboxylase, and malic dehydrogenase, and the relative abundance (RA) of unclassified_f_Peptostreptococcaceae and Intestinibacter were remarkably higher in the LNO treatment than in the HLS treatment, but the [Eubacterium]_coprostanoligenes_group RA showed the opposite result. The content of triglyceride, cholesterol, and low-density lipoprotein cholesterol were significantly higher in the CON and LNO treatments than in the HLS treatment, while the hormone-sensitive lipase activity and the non-esterified fatty acid content showed the opposite result. In conclusion, the flaxseed grain is more efficient than flaxseed oil in ameliorating the blood lipid profiles and it is a potential product for decreasing the lipid deposition of cashmere goats. Full article
Show Figures

Figure 1

19 pages, 1551 KiB  
Article
Influence of Enzyme Supplementation in the Diets of Broiler Chickens Formulated with Different Corn Hybrids Dried at Various Temperatures
by Franciele C. N. Giacobbo, Cinthia Eyng, Ricardo V. Nunes, Cleison de Souza, Levy V. Teixeira, Rachel Pilla, Jan S. Suchodolski and Cristiano Bortoluzzi
Animals 2021, 11(3), 643; https://doi.org/10.3390/ani11030643 - 28 Feb 2021
Cited by 5 | Viewed by 2267
Abstract
We evaluated the influence of enzymatic supplementation on the growth performance and cecal microbiota of broilers. A total of 2160 1-day-old male chicks were used in a 3 × 2 × 2 factorial arrangement (three corn hybrids, two drying temperatures −80 and 110 [...] Read more.
We evaluated the influence of enzymatic supplementation on the growth performance and cecal microbiota of broilers. A total of 2160 1-day-old male chicks were used in a 3 × 2 × 2 factorial arrangement (three corn hybrids, two drying temperatures −80 and 110 °C, with or without the inclusion of an enzymatic blend (amylase, xylanase, and protease) (20 birds/pen, n = 9). For all performance and digestibility parameters, we observed, in general, isolated effects of the corn hybrids and drying temperature. Birds that received the enzymatic blend in the diet showed better weight gain from 1 to 21 days (d) and better digestibility coefficients of nutrients at 42 d. Birds fed diets with corn dried at 80 °C showed a better feed conversion ratio from 1 to 42 d. At 21 d of age, enzymatic supplementation had positive effects on jejunum morphology. Enzyme supplementation increased the abundance of the phylum Tenericutes, class Bacilli and Mollicutes, reduced Clostridia, and increased the abundances of the families Lactobacillaceae, Anaeroplasmataceae, and O_RF39;F. In conclusion, the addition of amylase, xylanase, and protease led to a better nutrient digestibility, performance, and intestinal morphology. In addition, enzyme supplementation changed the diversity, composition, and predicted function of the cecal microbiota at d 21. Full article
Show Figures

Figure 1

17 pages, 4040 KiB  
Article
Effects of Oat Hay Content in Diets on Nutrient Metabolism and the Rumen Microflora in Sheep
by Xuejiao An, Lingyun Zhang, Jing Luo, Shengguo Zhao and Ting Jiao
Animals 2020, 10(12), 2341; https://doi.org/10.3390/ani10122341 - 9 Dec 2020
Cited by 24 | Viewed by 2281
Abstract
Oats have the characteristics of drought tolerance, cold resistance, strong adaptability, high forage yield, and high nutritional value. However, there are few reports on the most appropriate amount of oat hay in ruminant diets, the digestion and metabolism of ruminants, and the rumen [...] Read more.
Oats have the characteristics of drought tolerance, cold resistance, strong adaptability, high forage yield, and high nutritional value. However, there are few reports on the most appropriate amount of oat hay in ruminant diets, the digestion and metabolism of ruminants, and the rumen microflora. To study the effects of oat hay content in diets on nutrient digestion and metabolism and the rumen microflora in sheep, 9 German Merino and Mongolian crossbred rams of similar body condition and weight with permanent fistulas were selected. The 3 × 3 Latin square design was used to randomly divide the rams into 3 groups, with 3 animals in each group. The three groups were fed different kinds of roughage: whole-plant corn silage only (corn silage group, CSG), oat hay mixed with whole-plant corn silage (1:1) (mixed group, MG), and oat hay only (oat hay group, OHG). The nutrient digestion and metabolism of each group were measured, and the pH and rumen microflora were examined after feeding for different durations. Dynamic changes in microbial communities were detected. The nutrient digestion and metabolism results showed that, with an increase in the content of oat hay in the diet, the intake and apparent digestibility of dry matter (DM) and organic matter (OM) showed an increasing trend, and the intake, digestion, and stability of acid detergent fiber (ADF) and neutral detergent fiber (NDF) increased in the OHG. The apparent digestibility, dietary nitrogen, deposited nitrogen, and nitrogen retention rate in this group were significantly higher than those in the CSG (p < 0.05). The rumen pH and sequencing results showed that the rumen fluid pH of the CSG was significantly lower than that of the OHG at 1 and 5 h (p < 0.05). The main microbial in the rumen of the three groups of sheep were Bacteroides, Sclerotium, and Proteus. The dominant taxon in the CSG was Prevotella, followed by Vibrio syringae, and the dominant taxon in the MG and OHG was Prevotella, followed by Rikenellaceae. Redundancy analysis showed that ADF and NDF in the feed had an effect on the abundance of Fibrobacteres, Ruminococcaceae, and Prevotella. Our findings indicate that the use of oat hay roughage in the diet significantly improves the apparent digestibility of NDF and ADF and helps maintain the stable state of the sheep’s rumen internal environment and the growth of rumen microorganisms. Full article
Show Figures

Figure 1

16 pages, 1001 KiB  
Article
The Impact of Producing Type and Dietary Crude Protein on Animal Performances and Microbiota Together with Greenhouse Gases Emissions in Growing Pigs
by Ahmad Reza Seradj, Joaquim Balcells, Laura Sarri, Lorenzo José Fraile and Gabriel de la Fuente Oliver
Animals 2020, 10(10), 1742; https://doi.org/10.3390/ani10101742 - 25 Sep 2020
Cited by 4 | Viewed by 2426
Abstract
In order to reduce dietary nitrogen and achieve an efficient protein deposition as well as decrease N wastage, we challenged the nutrient utilization efficiency of two different producing types in front of a dietary crude protein (CP) restriction and studied the role of [...] Read more.
In order to reduce dietary nitrogen and achieve an efficient protein deposition as well as decrease N wastage, we challenged the nutrient utilization efficiency of two different producing types in front of a dietary crude protein (CP) restriction and studied the role of the microbiota in such an adaptation process. Therefore, 32 pure castrated male Duroc (DU) and 32 entire male hybrid (F2) piglets were raised in a three-phase feeding regime. At each phase, two iso caloric diets differing in CP content, also known as normal protein (NP) and low protein (LP), were fed to the animals. LP diets had a fixed restriction (2%) in CP content in regards to NP ones throughout the phases of the experiment. At the end of third phase, fecal samples were collected for microbiota analysis purposes and greenhouse gases emissions, together with ammonia, were tested. No changes were found in average daily feed intake (ADFI) of animals of two producing types (Duroc vs. F2) or those consumed different experimental diets (NP vs. LP) throughout the course of study. However, at the end of each experimental phase the average body weight (BW) of hybrid animals were higher compared to Duroc pigs, whereas a reverse trend was observed for average daily gain (ADG), where Duroc pigs showed greater values with respect to hybrid ones. Despite, greater CH4 and ammonia emissions in Duroc pigs with respect to F2, no significant differences were found in contaminant gases emissions between diets. Moreover, LP diets did not alter the microbial community structure, in terms of diversity, although some genera were affected by the dietary challenge. Results suggest that the impact of reducing 2% of CP content was limited for reduction in contaminant gases emissions and highlight the hypothesis that moderate change in the dietary protein levels can be overcome by long-term adaptation of the gut microbiota. Overall, the influence of the producing type on performance and digestive microbiota composition was more pronounced than the dietary effect. However, both producing types responded differently to CP restriction. The use of fecal microbiota as biomarker for predicting feed efficiency has a great potential that should be completed with robust predictive models to achieve consistent and valid results. Full article
Show Figures

Figure 1

13 pages, 796 KiB  
Article
Novel Encapsulated Calcium Butyrate Supplement Enhances On-Farm Dairy Calf Growth Performance and Body Conformation in a Pasture-Based Dairy Production System
by Aduli Enoch Othniel Malau-Aduli, Razaq Oladimeji Balogun, John Roger Otto, Sumita Verma, Maduka Wehella and David Jones
Animals 2020, 10(8), 1380; https://doi.org/10.3390/ani10081380 - 8 Aug 2020
Cited by 3 | Viewed by 2756
Abstract
The effect of supplementing neonatal heifer calves with varying levels of ECAB on pre-weaning growth performance was investigated. Post-weaning growth was also measured, to determine any carry-over effect of pre-weaning supplementation of ECAB. Forty-eight heifer calves (7 ± 0.4 days old, average liveweight [...] Read more.
The effect of supplementing neonatal heifer calves with varying levels of ECAB on pre-weaning growth performance was investigated. Post-weaning growth was also measured, to determine any carry-over effect of pre-weaning supplementation of ECAB. Forty-eight heifer calves (7 ± 0.4 days old, average liveweight of 39.3 ± 5.3 kg) were utilized in a complete randomised experimental design, comprising 16 calves per pen, randomly allocated to one of the following three treatments: (1) Basal commercial calf starter mix without ECAB (Control); (2) control plus 4 kg/ton of ECAB (Low); and (3) control plus 6 kg/ton of ECAB (High). Calves were group-fed ad libitum for 77 days (11 weeks, pre-weaning period) with free choice access to water and 5.5 L of milk per head per day through an automated feeder. Calves were weighed weekly during the pre-weaning period, after which all calves were then weaned onto the same ryegrass pasture as one group. At approximately 9 months of age, calves were weighed to estimate post-weaning body weight gain. During the pre-weaning period, average daily dry matter feed intake was similar for 4 kg/ton and 6 kg/ton calves (649 g versus 688 g, respectively) and both were greater than that of the control calves (382 g). Average daily gain (ADG) was significantly higher for 4 kg/ton calves compared to 6 kg/ton calves or control calves (0.83 ± 0.03 kg, 0.74 ± 0.03 kg and 0.71 ± 0.03 kg, respectively; p = 0.0001). Similarly, 4 kg/ton calves had significantly increased chest girth (95.9 ± 0.7 cm), withers height (88.9 ± 0.5 cm), body length (82.9 ± 0.6 cm), and body condition score (1.99 ± 0.12) compared to 6 kg/ton calves (93.4 ± 0.7 cm, 87.4 ± 0.7, 81.5 ± 0.6 cm, and 1.67 ± 0.10, respectively) or control calves (92.9 ± 0.7 cm, 88.2 ± 0.5 cm, 80.1 ± 0.6 cm, and 1.30 ± 0.08, respectively). There was significant treatment × week interaction for all pre-weaning growth parameters. Breed differences were detected but there was no treatment × breed interaction. Post-weaning, 4 kg/t calves and 6 kg/t calves had significantly higher ADG compared to control calves (0.80 ± 0.03 kg, 0.85 ± 0.03 kg versus 0.70 ± 0.03 kg, respectively; p = 0.0047). It is concluded that under the conditions of this study, supplementing heifer calves with ECAB during pre-weaning period resulted in improved growth performance and there appears to be a post-weaning carry-over effect. Full article
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 684 KiB  
Review
Managing Gut Microbiota through In Ovo Nutrition Influences Early-Life Programming in Broiler Chickens
by Abdelrazeq M. Shehata, Vinod K. Paswan, Youssef A. Attia, Abdel-Moneim Eid Abdel-Moneim, Mohammed Sh. Abougabal, Mohamed Sharaf, Reda Elmazoudy, Wejdan T. Alghafari, Mohamed A. Osman, Mayada R. Farag and Mahmoud Alagawany
Animals 2021, 11(12), 3491; https://doi.org/10.3390/ani11123491 - 7 Dec 2021
Cited by 32 | Viewed by 5469
Abstract
The chicken gut is the habitat to trillions of microorganisms that affect physiological functions and immune status through metabolic activities and host interaction. Gut microbiota research previously focused on inflammation; however, it is now clear that these microbial communities play an essential role [...] Read more.
The chicken gut is the habitat to trillions of microorganisms that affect physiological functions and immune status through metabolic activities and host interaction. Gut microbiota research previously focused on inflammation; however, it is now clear that these microbial communities play an essential role in maintaining normal homeostatic conditions by regulating the immune system. In addition, the microbiota helps reduce and prevent pathogen colonization of the gut via the mechanism of competitive exclusion and the synthesis of bactericidal molecules. Under commercial conditions, newly hatched chicks have access to feed after 36–72 h of hatching due to the hatch window and routine hatchery practices. This delay adversely affects the potential inoculation of the healthy microbiota and impairs the development and maturation of muscle, the immune system, and the gastrointestinal tract (GIT). Modulating the gut microbiota has been proposed as a potential strategy for improving host health and productivity and avoiding undesirable effects on gut health and the immune system. Using early-life programming via in ovo stimulation with probiotics and prebiotics, it may be possible to avoid selected metabolic disorders, poor immunity, and pathogen resistance, which the broiler industry now faces due to commercial hatching and selection pressures imposed by an increasingly demanding market. Full article
Show Figures

Figure 1

Back to TopTop