Special Issue "Challenges in Reliability Analysis of Aerospace Electronics"

A special issue of Aerospace (ISSN 2226-4310).

Deadline for manuscript submissions: 30 November 2018

Special Issue Editors

Guest Editor
Dr. John W. Evans

NASA HQ Office of Safety Mission Assurance, Washington, D.C., USA
Website | E-Mail
Interests: reliability of electronic components; model-based systems engineering/model-based mission assurance; physics of failure-based reliability analysis, simulation, radiation effects; fatigue and fracture in electronic component packaging
Guest Editor
Prof. Dr. Ephraim Suhir

1Department of Mechanics and Materials, Portland State University, Portland, OR 97207, USA
2ERS Co., 727 Alvina Ct., Los Altos, CA 94024, USA
Website | E-Mail
Phone: +1 650 969 1530
Interests: applied mathematics, applied mechanics, probabilistic methods in reliability engineering, technical diagnostics; composite and smart materials and systems; shock and vibrations analyses and testing; thermal stress analysis; human-in-the-loop; aerospace missions success and safety

Special Issue Information

Dear Colleagues,

text

Aerospace electronics is continuously evolving in the variety of mission applications and through the ever-increasing demands of complex systems that must meet the environmental challenges presented by space and aircraft operations. Electronic and photonic components serve to collect data, provide controls and communications, and afford power regulation in integrated systems, and they must survive launch vibration, thermal environments, and radiation exposure. Traditional components used for aerospace are giving way to commercial off-the-shelf solutions that can provide greater performance at lower costs. At the same time, the design processes are evolving into more agile and cost-effective approaches while antiquated standards based upon military handbook methods are no longer adequate for design analysis.

The emergence of Model-Based Systems Engineering (MBSE) to govern the synthesis of the architecture is rapidly evolving, and MBSE-driven reliability analysis is following quickly along with it, providing for new high-value approaches to system reliability analysis. Physics of failure is now recognized as an important technique in reliability analysis at the board and component level. An obvious nexus is emerging to create a complete solution to reliability analysis. Many new developments are needed which will incorporate all sources of data into the analytical process to rapidly assure that systems will meet the demands.

This Special Issue of the online journal Aerospace is seeking a wider range of papers covering the latest developments in the reliability analysis of aerospace electronics. Of special interest are the latest developments driven by MBSE at the system level. In addition, articles covering the latest developments and applications of the physics of failure—inclusive of radiation effects—are sought for this journal. This includes the analysis of failure mechanisms and the incorporation of probabilistic methods concurrently with physics of failure, as well as effective uses of test data and field operational data within the analytical framework.

Dr. John W. Evans
Prof. Dr. Ephraim Suhir
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Aerospace is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 550 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (5 papers)

View options order results:
result details:
Displaying articles 1-5
Export citation of selected articles as:

Editorial

Jump to: Research, Review

Open AccessEditorial Aerospace Mission Outcome: Predictive Modeling
Received: 14 May 2018 / Revised: 14 May 2018 / Accepted: 19 May 2018 / Published: 22 May 2018
PDF Full-text (192 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Challenges in Reliability Analysis of Aerospace Electronics)

Research

Jump to: Editorial, Review

Open AccessArticle Failure Estimates for SiC Power MOSFETs in Space Electronics
Received: 27 April 2018 / Revised: 7 June 2018 / Accepted: 20 June 2018 / Published: 22 June 2018
PDF Full-text (813 KB) | HTML Full-text | XML Full-text
Abstract
Silicon carbide (SiC) power metal-oxide-semiconductor field effect transistors (MOSFETs) are space-ready in terms of typical reliability measures. However, single event burnout (SEB) due to heavy-ion irradiation often occurs at voltages 50% or lower than specified breakdown. Failure rates in space are estimated for
[...] Read more.
Silicon carbide (SiC) power metal-oxide-semiconductor field effect transistors (MOSFETs) are space-ready in terms of typical reliability measures. However, single event burnout (SEB) due to heavy-ion irradiation often occurs at voltages 50% or lower than specified breakdown. Failure rates in space are estimated for burnout of 1200 V devices based on the experimental data for burnout and the expected heavy-ion linear energy transfer (LET) spectrum in space. Full article
(This article belongs to the Special Issue Challenges in Reliability Analysis of Aerospace Electronics)
Figures

Figure 1

Open AccessArticle Maintenance Model of Digital Avionics
Received: 20 February 2018 / Revised: 24 March 2018 / Accepted: 29 March 2018 / Published: 2 April 2018
PDF Full-text (11238 KB) | HTML Full-text | XML Full-text
Abstract
The cost of avionics maintenance is extremely high for modern aircraft. It can be as high as 30% of the aircraft maintenance cost. A great impact on the cost of avionics maintenance is provided by a high level of No Fault Found events
[...] Read more.
The cost of avionics maintenance is extremely high for modern aircraft. It can be as high as 30% of the aircraft maintenance cost. A great impact on the cost of avionics maintenance is provided by a high level of No Fault Found events (NFF). Intermittent faults are the leading cause of the NFF appearance in avionics. The NFF rate for avionics systems is between 20% and 50%. The practice of avionics operation and maintenance confirms the relevance of assessing the impact of intermittent faults on the maintenance cost and the choice of such option of the maintenance management, in which the negative impact of the intermittent faults is minimized. In this paper, a new mathematical model of digital avionics maintenance is developed. Key maintenance effectiveness indicators are selected. General mathematical expressions are obtained for the average availability, mean time between unscheduled removals (MTBUR), and expected maintenance cost of single unit and redundant avionics systems, which are subject to permanent failures and intermittent faults. The dependence of the maintenance effectiveness indicators on the rate of permanent failures and intermittent faults is investigated for the case of exponential distribution of time to failures and faults. The dependence of average availability on the number of spare units in the airline’s warehouse is also analyzed. On the base of the proposed maintenance model, different options of avionics maintenance management are considered. Numerical examples illustrate how to reduce the expected maintenance cost of avionics systems. Full article
(This article belongs to the Special Issue Challenges in Reliability Analysis of Aerospace Electronics)
Figures

Graphical abstract

Open AccessArticle Fully-Deterministic Execution of IEC-61499 Models for Distributed Avionics Applications
Received: 31 October 2017 / Revised: 28 December 2017 / Accepted: 22 January 2018 / Published: 3 February 2018
PDF Full-text (5248 KB) | HTML Full-text | XML Full-text
Abstract
The development of time-critical Distributed Avionics Applications (DAAs) pushes beyond the limit of existing modeling methodologies to design dependable systems. Aerospace and industrial automation entail high-integrity applications where execution time is essential for dependability. This tempts us to use modeling technologies from one
[...] Read more.
The development of time-critical Distributed Avionics Applications (DAAs) pushes beyond the limit of existing modeling methodologies to design dependable systems. Aerospace and industrial automation entail high-integrity applications where execution time is essential for dependability. This tempts us to use modeling technologies from one domain in another. The challenge is to demonstrate that they can be effectively used across domains whilst assuring temporally dependable applications. This paper shows that an IEC61499-modeled DAA can satisfy temporal dependability requirements as to end-to-end flow latency when it is properly scheduled and realized in a fully deterministic avionics platform that entails Integrated Modular Avionics (IMA) computation along with Time-Triggered Protocol (TTP) communication. Outcomes from the execution design of an IEC61499-based DAA model for an IMA-TTP platform are used to check runtime correctness through DAA control stability. IEC 61499 is a modeling standard for industrial automation, and it is meant to facilitate distribution and reconfiguration of applications. The DAA case study is a Distributed Fluid Control System (DFCS) for the Airbus-A380 fuel system. Latency analysis results from timing metrics as well as closed-loop control simulation results are presented. Experimental outcomes suggest that an IEC61499-based DFCS model can achieve desired runtime latency for temporal dependability when executed in an IMA-TTP platform. Concluding remarks and future research direction are also discussed. Full article
(This article belongs to the Special Issue Challenges in Reliability Analysis of Aerospace Electronics)
Figures

Graphical abstract

Review

Jump to: Editorial, Research

Open AccessReview Flip-Chip (FC) and Fine-Pitch-Ball-Grid-Array (FPBGA) Underfills for Application in Aerospace Electronics—Brief Review
Received: 31 May 2018 / Revised: 27 June 2018 / Accepted: 28 June 2018 / Published: 8 July 2018
PDF Full-text (296 KB) | HTML Full-text | XML Full-text
Abstract
In this review, some major aspects of the current underfill technologies for flip-chip (FC) and fine-pitch-ball-grid-array (FPBGA), including chip-size packaging (CSP), are addressed, with an emphasis on applications, such as aerospace electronics, for which high reliability level is imperative. The following aspects of
[...] Read more.
In this review, some major aspects of the current underfill technologies for flip-chip (FC) and fine-pitch-ball-grid-array (FPBGA), including chip-size packaging (CSP), are addressed, with an emphasis on applications, such as aerospace electronics, for which high reliability level is imperative. The following aspects of the FC and FPGGA technologies are considered: attributes of the FC and FPBGA structures and technologies; underfill-induced stresses; the roles of the glass transition temperature (Tg) of the underfill materials; some major attributes of the lead-free solder systems with underfill; reliability-related issues; thermal fatigue of the underfilled solder joints; warpage-related issues; attributes of accelerated life testing of solder joint interconnections with underfills; and predictive modeling, both finite-element-analysis (FEA)-based and analytical (“mathematical”). It is concluded particularly that the application of the quantitative assessments of the effect of the fabrication techniques on the reliability of solder materials, when high reliability is imperative, is critical and that all the three types of research tools that an aerospace reliability engineer has at his/her disposal, should be pursued, when appropriate and possible: experimental/testing, finite-element-analysis(FEA) simulations, and the “old-fashioned” analytical (“mathematical”) modeling. These two modeling techniques are based on different assumptions, and if the computed data obtained using these techniques result in the close output information, then there is a good reason to believe that this information is both accurate and trustworthy. This effort is particularly important for high-reliability FC and FPBGA applications, such as aerospace electronics, as the aerospace IC packages become more complex, and the requirements for their failure-free operations become more stringent. Full article
(This article belongs to the Special Issue Challenges in Reliability Analysis of Aerospace Electronics)
Back to Top