Next Issue
Previous Issue

Table of Contents

Genes, Volume 2, Issue 2 (June 2011), Pages 298-396

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-8
Export citation of selected articles as:

Editorial

Jump to: Research, Review

Open AccessEditorial Special Issue: Gene Conversion in Duplicated Genes
Genes 2011, 2(2), 394-396; doi:10.3390/genes2020394
Received: 13 June 2011 / Accepted: 17 June 2011 / Published: 17 June 2011
PDF Full-text (46 KB) | HTML Full-text | XML Full-text
Abstract
Gene conversion is an outcome of recombination, causing non-reciprocal transfer of a DNA fragment. Several decades later than the discovery of crossing over, gene conversion was first recognized in fungi when non-Mendelian allelic distortion was observed. Gene conversion occurs when a double-strand break
[...] Read more.
Gene conversion is an outcome of recombination, causing non-reciprocal transfer of a DNA fragment. Several decades later than the discovery of crossing over, gene conversion was first recognized in fungi when non-Mendelian allelic distortion was observed. Gene conversion occurs when a double-strand break is repaired by using homologous sequences in the genome. In meiosis, there is a strong preference to use the orthologous region (allelic gene conversion), which causes non-Mendelian allelic distortion, but paralogous or duplicated regions can also be used for the repair (inter-locus gene conversion, also referred to as non-allelic and ectopic gene conversion). The focus of this special issue is the latter, interlocus gene conversion; the rate is lower than allelic gene conversion but it has more impact on phenotype because more drastic changes in DNA sequence are involved. [...] Full article
(This article belongs to the Special Issue Gene Conversion in Duplicated Genes)

Research

Jump to: Editorial, Review

Open AccessArticle The Rate and Tract Length of Gene Conversion between Duplicated Genes
Genes 2011, 2(2), 313-331; doi:10.3390/genes2020313
Received: 17 February 2011 / Revised: 11 March 2011 / Accepted: 17 March 2011 / Published: 25 March 2011
Cited by 11 | PDF Full-text (642 KB) | HTML Full-text | XML Full-text
Abstract
Interlocus gene conversion occurs such that a certain length of DNA fragment is non-reciprocally transferred (copied and pasted) between paralogous regions. To understand the rate and tract length of gene conversion, there are two major approaches. One is based on mutation-accumulation experiments, and
[...] Read more.
Interlocus gene conversion occurs such that a certain length of DNA fragment is non-reciprocally transferred (copied and pasted) between paralogous regions. To understand the rate and tract length of gene conversion, there are two major approaches. One is based on mutation-accumulation experiments, and the other uses natural DNA sequence variation. In this review, we overview the two major approaches and discuss their advantages and disadvantages. In addition, to demonstrate the importance of statistical analysis of empirical and evolutionary data for estimating tract length, we apply a maximum likelihood method to several data sets. Full article
(This article belongs to the Special Issue Gene Conversion in Duplicated Genes)
Open AccessArticle Effect of Culture Conditions on Viability of Mouse and Rat Embryos Developed in Vitro
Genes 2011, 2(2), 332-344; doi:10.3390/genes2020332
Received: 14 January 2011 / Revised: 11 February 2011 / Accepted: 29 March 2011 / Published: 1 April 2011
Cited by 6 | PDF Full-text (214 KB) | HTML Full-text | XML Full-text
Abstract
Currently in vitro culture of mouse preimplantation embryos has become a very important technique to investigate different mechanisms of early embryogenesis. However, there is a big difference in the preimplantation development between mammalian species. Despite close relatedness to mice, in vitro cultivation of
[...] Read more.
Currently in vitro culture of mouse preimplantation embryos has become a very important technique to investigate different mechanisms of early embryogenesis. However, there is a big difference in the preimplantation development between mammalian species. Despite close relatedness to mice, in vitro cultivation of rat preimplantation embryos is still delicate and needs further investigation and optimizations. In this study we have compared the in vitro developmental potential of mouse and rat embryos cultured at different culture conditions in parallel experiments. Interestingly, mouse zygotes developed in vitro until blastocyst stage even in inadequate medium without any phosphates and with low osmolarity which was formulated especially for cultivation of rat embryos. Rat parthenotes and zygotes developed in M16 medium formulated for mouse embryos only till 2-cell stage and further development is blocked completely at this stage. Moreover, developmental ability of rat embryos in vitro was significantly lower in comparison with mouse even in special rat mR1ECM medium. Mouse and rat embryos at 2-cell stage obtained in vivo developed until blastocyst stages significantly more efficiently compared to zygotes. Culture of mouse zygotes in glass capillaries resulted in a significantly higher rate of morula and blastocyst development compared with dishes. The Well-of-the-Well system resulted in a significant improvement when compared with dishes for the culture of rat zygotes only until morula stage. Reduced oxygen tension increased the developmental rate of rat but not mouse zygotes until blastocyst stage. This study demonstrates that development of early preimplantation embryos is altered by different culture conditions and show strong differences even between two related species such as mice and rats. Therefore, for understanding the fundamental mechanisms of early mammalian development it is very important to use embryos of various species. Full article
(This article belongs to the Special Issue The Early Mouse Embryo as a Model Organism for Reprogramming)
Open AccessArticle Allelic Imbalances in Radiation—Associated Acute Myeloid Leukemia
Genes 2011, 2(2), 384-393; doi:10.3390/genes2020384
Received: 6 April 2011 / Revised: 18 May 2011 / Accepted: 27 May 2011 / Published: 31 May 2011
PDF Full-text (298 KB) | HTML Full-text | XML Full-text
Abstract
Acute myeloid leukemia (AML) can develop as a secondary malignancy following radiotherapy, but also following low-dose environmental or occupational radiation exposure. Therapy-related AML frequently carries deletions of chromosome 5q and/or 7, but for low-dose exposure associated AML this has not been described. For
[...] Read more.
Acute myeloid leukemia (AML) can develop as a secondary malignancy following radiotherapy, but also following low-dose environmental or occupational radiation exposure. Therapy-related AML frequently carries deletions of chromosome 5q and/or 7, but for low-dose exposure associated AML this has not been described. For the present study we performed genome-wide screens for loss-of-heterozygosity (LOH) in a set of 19 AML cases that developed after radiation-exposure following the Chernobyl accident. Using Affymetrix SNP arrays we found large regions of LOH in 16 of the cases. Eight cases (42%) demonstrated LOH at 5q and/or 7, which is a known marker of complex karyotypic changes and poor prognosis. We could show here for the first time that exposure to low-dose ionizing radiation induces AML with molecular alterations similar to those seen in therapy-related cases. Full article
(This article belongs to the Special Issue Radiation-Related Cancer 25 Years After Chernobyl)

Review

Jump to: Editorial, Research

Open AccessReview Pluripotent Stem Cell Studies Elucidate the Underlying Mechanisms of Early Embryonic Development
Genes 2011, 2(2), 298-312; doi:10.3390/genes2020298
Received: 14 January 2011 / Revised: 8 March 2011 / Accepted: 21 March 2011 / Published: 24 March 2011
PDF Full-text (261 KB) | HTML Full-text | XML Full-text
Abstract
Early embryonic development is a multi-step process that is intensively regulated by various signaling pathways. Because of the complexity of the embryo and the interactions between the germ layers, it is very difficult to fully understand how these signals regulate embryo patterning. Recently,
[...] Read more.
Early embryonic development is a multi-step process that is intensively regulated by various signaling pathways. Because of the complexity of the embryo and the interactions between the germ layers, it is very difficult to fully understand how these signals regulate embryo patterning. Recently, pluripotent stem cell lines derived from different developmental stages have provided an in vitro system for investigating molecular mechanisms regulating cell fate decisions. In this review, we summarize the major functions of the BMP, FGF, Nodal and Wnt signaling pathways, which have well-established roles in vertebrate embryogenesis. Then, we highlight recent studies in pluripotent stem cells that have revealed the stage-specific roles of BMP,FGF and Nodal pathways during neural differentiation. These findings enhance our understanding of the stepwise regulation of embryo patterning by particular signaling pathways and provide new insight into the mechanisms underlying early embryonic development. Full article
(This article belongs to the Special Issue The Early Mouse Embryo as a Model Organism for Reprogramming)
Open AccessReview Post-Transcriptional Control of Gene Expression in Mouse Early Embryo Development: A View from the Tip of the Iceberg
Genes 2011, 2(2), 345-359; doi:10.3390/genes2020345
Received: 25 January 2011 / Revised: 22 February 2011 / Accepted: 2 April 2011 / Published: 6 April 2011
Cited by 2 | PDF Full-text (308 KB) | HTML Full-text | XML Full-text
Abstract
Fertilization is a very complex biological process that requires the perfect cooperation between two highly specialized cells: the male and female gametes. The oocyte provides the physical space where this process takes place, most of the energetic need, and half of the genetic
[...] Read more.
Fertilization is a very complex biological process that requires the perfect cooperation between two highly specialized cells: the male and female gametes. The oocyte provides the physical space where this process takes place, most of the energetic need, and half of the genetic contribution. The spermatozoon mostly contributes the other half of the chromosomes and it is specialized to reach and to penetrate the oocyte. Notably, the mouse oocyte and early embryo are transcriptionally inactive. Hence, they fully depend on the maternal mRNAs and proteins stored during oocyte maturation to drive the onset of development. The new embryo develops autonomously around the four-cell stage, when maternal supplies are exhausted and the zygotic genome is activated in mice. This oocyte-to-embryo transition needs an efficient and tightly regulated translation of the maternally-inherited mRNAs, which likely contributes to embryonic genome activation. Full understanding of post-transcriptional regulation of gene expression in early embryos is crucial to understand the reprogramming of the embryonic genome, it might help driving reprogramming of stem cells in vitro and will likely improve in vitro culturing of mammalian embryos for assisted reproduction. Nevertheless, the knowledge of the mechanism(s) underlying this fundamental step in embryogenesis is still scarce, especially if compared to other model organisms. We will review here the current knowledge on the post-transcriptional control of gene expression in mouse early embryos and discuss some of the unanswered questions concerning this fascinating field of biology. Full article
(This article belongs to the Special Issue The Early Mouse Embryo as a Model Organism for Reprogramming)
Open AccessReview A Reverse Transcriptase-Dependent Mechanism Is Essential for Murine Preimplantation Development
Genes 2011, 2(2), 360-373; doi:10.3390/genes2020360
Received: 6 April 2011 / Revised: 6 May 2011 / Accepted: 10 May 2011 / Published: 18 May 2011
Cited by 5 | PDF Full-text (233 KB) | HTML Full-text | XML Full-text
Abstract
LINE-1 (Long Interspersed Nuclear elements) and HERVs (Human Endogenous Retroviruses) are two families of retrotransposons which together account for about 28% of the human genome. Genes harbored within LINE-1 and HERV retrotransposons, particularly that encoding the reverse transcriptase (RT) enzyme, are generally expressed
[...] Read more.
LINE-1 (Long Interspersed Nuclear elements) and HERVs (Human Endogenous Retroviruses) are two families of retrotransposons which together account for about 28% of the human genome. Genes harbored within LINE-1 and HERV retrotransposons, particularly that encoding the reverse transcriptase (RT) enzyme, are generally expressed at low levels in differentiated cells, but their expression is up-regulated in embryonic tissues and transformed cells. Here we review evidence indicating that the LINE-1-encoded RT plays regulatory roles in early embryonic development. Indeed, antisense-mediated inhibition of expression of a highly expressed LINE-1 family in mouse zygotes caused developmental arrest at the two- or four-cell embryo stages. Development is also arrested when the embryo endogenous RT activity is pharmacologically inhibited by nevirapine, an RT inhibitor currently employed in AIDS treatment. The arrest of embryonic development is irreversible even after RT inhibition is removed and it is associated with subverted gene expression profiles. These data indicate an early requirement for LINE-1-encoded RT to support early developmental progression. Consistent with this, recent findings indicate that a reverse transcription wave is triggered in the zygote a few hours after fertilization and is propagated at least through the first two rounds of cell division. On the whole these findings suggest that reverse transcription is strictly required in early embryos as a key component of a novel RT-dependent mechanism that regulated the proper unfolding of the developmental program. Full article
(This article belongs to the Special Issue The Early Mouse Embryo as a Model Organism for Reprogramming)
Open AccessReview Clinical Experiences with Radiation Induced Thyroid Cancer after Chernobyl
Genes 2011, 2(2), 374-383; doi:10.3390/genes2020374
Received: 14 April 2011 / Revised: 24 May 2011 / Accepted: 30 May 2011 / Published: 31 May 2011
Cited by 1 | PDF Full-text (268 KB) | HTML Full-text | XML Full-text
Abstract
The risk of developing thyroid cancer increases considerably after exposure to external or internal radiation, especially in children below the age of 10. After the Chernobyl reactor accident, the yearly incidence of childhood thyroid cancer in Belarus increased to approximately 40 per 1.000.000
[...] Read more.
The risk of developing thyroid cancer increases considerably after exposure to external or internal radiation, especially in children below the age of 10. After the Chernobyl reactor accident, the yearly incidence of childhood thyroid cancer in Belarus increased to approximately 40 per 1.000.000 in girls and to roughly 20 per 1.000.000 in boys compared to approximately 0.5 cases per 1.000.000 prior to the accident. Typically, young children with thyroid cancer after radiation exposure present in ≈95% of the cases as papillary cancers, in ≈50% as invasive tumors growing outside the thyroid capsule, in ≈65% with lymph node metastases and in ≈15% with distant metastases. A joint Belarusian-German project starting in April 1993 that combined treatment with surgery and radioiodine was organized in 237 selected children from Belarus who were exposed to the Chernobyl fallout and had advanced stages of thyroid cancer. The study group included 141 girls and 96 boys. Their median age at the time of the accident was 1.7 years; whereas the median age at the time of diagnosis was 12.4 years. With the exception of two cases with follicular histology, the majority of the patients had been diagnosed with papillary thyroid cancers. In 63%, the tumor had grown outside the thyroid capsule and invaded the tissue of the neck (pT4). Nearly all of the selected cases (96%) showed-up with lymph node metastases (pN1) and 43% of the patients with distant metastases mainly to the lungs (pM1). In 58% of the children, complete remissions of thyroid cancer could be achieved until December 31st 2010 and in 34% of the children, stable partial remissions; in the remaining 8% of the patients, partial remissions were observed. The risk of radiation-induced thyroid cancer increased considerably in children and adolescents who were affected by the Chernobyl reactor accident. In spite of the fact, that thyroid cancers in young children seem to behave more aggressively than in older patients, the results of combined treatment with thyroidectomy, radioiodine therapy and thyroid hormone replacement are excellent. Full article
(This article belongs to the Special Issue Radiation-Related Cancer 25 Years After Chernobyl)

Journal Contact

MDPI AG
Genes Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
genes@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Genes
Back to Top