Next Issue
Previous Issue

Table of Contents

Catalysts, Volume 8, Issue 6 (June 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) The development of nanostructures active in Vis light range in process of bacteria inactivation and [...] Read more.
View options order results:
result details:
Displaying articles 1-32
Export citation of selected articles as:
Open AccessArticle Desilicated ZSM-5 Zeolites for the Production of Renewable p-Xylene via Diels–Alder Cycloaddition of Dimethylfuran and Ethylene
Catalysts 2018, 8(6), 253; https://doi.org/10.3390/catal8060253
Received: 30 April 2018 / Revised: 7 June 2018 / Accepted: 14 June 2018 / Published: 20 June 2018
PDF Full-text (5594 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The selective production of p-xylene and other aromatics starting from sugars and bioderived ethylene offers great promise and can eliminate the need for separation of xylene isomers, as well as decreasing dependency on fossil resources and CO2 emissions. Although the reaction
[...] Read more.
The selective production of p-xylene and other aromatics starting from sugars and bioderived ethylene offers great promise and can eliminate the need for separation of xylene isomers, as well as decreasing dependency on fossil resources and CO2 emissions. Although the reaction is known, the microporosity of traditional commercial zeolites appears to be a limiting factor. In this work, we demonstrate for the first time that simply desilication of microporous commercial zeolites by a simple NaOH treatment can greatly enhance conversion and selectivity. The [4 + 2] Diels–Alder cycloaddition of 2,5-dimethylfuran with ethylene in a pressurised reactor was investigated using a series of H-ZSM-5 catalysts with SiO2/Al2O3 ratios 30 and 80 with increasing pore size induced by desilication. X-ray diffraction, scanning electron microscopy, 27Al magic-angle spinning nuclear magnetic resonance, temperature programmed desorption of ammonia, and nitrogen physisorption measurements were used to characterise the catalysts. The enhancement of conversion was observed for all desilicated samples compared to the untreated zeolite, and increases in temperature and ethylene pressure significantly improved both dimethylfuran conversion and selectivity to p-xylene due to the easier desorption from the zeolite’s surface and the augmented cycloaddition rate, respectively. A compromise between acidity and mesoporosity was found to be the key to enhancing the activity and maximising the selectivity in the production of p-xylene from 2,5-dimethylfuran. Full article
(This article belongs to the Special Issue Catalytic Processes for The Valorisation of Biomass Derived Molecules)
Figures

Graphical abstract

Open AccessArticle Ti-Doped Pd-Au Catalysts for One-Pot Hydrogenation and Ring Opening of Furfural
Catalysts 2018, 8(6), 252; https://doi.org/10.3390/catal8060252
Received: 23 May 2018 / Revised: 13 June 2018 / Accepted: 14 June 2018 / Published: 20 June 2018
PDF Full-text (5367 KB) | HTML Full-text | XML Full-text
Abstract
Pd-Au bimetallic catalysts with different Pd/Au atomic ratios, supported on ordered structured silica (Hexagonal mesoporous silica—HMS, or Santa Barbara Amorphous-15—SBA-15) were evaluated for one-pot hydrogenation of furfural to 1,2-pentanediol. The surface and structural properties of the catalysts were deeply investigated by X-ray photoelectron
[...] Read more.
Pd-Au bimetallic catalysts with different Pd/Au atomic ratios, supported on ordered structured silica (Hexagonal mesoporous silica—HMS, or Santa Barbara Amorphous-15—SBA-15) were evaluated for one-pot hydrogenation of furfural to 1,2-pentanediol. The surface and structural properties of the catalysts were deeply investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), N2 adsorption isotherms (BET), Infrared spectroscopy (IR), and acid capacity measurements. XPS studies revealed that Ti doped supports had higher dispersion of the active phase, particularly in the case of Pd-Au materials in which Ti played an important role in stabilizing the metallic species. Among the various process conditions studied, such as temperature (160 °C), catalyst amount (10% w/w), and reaction time (5 h), H2 pressure (500 psi) was found to improve the 1,2-pentanediol selectivity. The SBA silica bimetallic Ti-doped system showed the best performance in terms of stability and reusability, after multiple cycles. Under specific reaction conditions, the synergism between Pd-Au alloy and Ti doping of the support allowed the ring opening pathway towards the formation of 1,2-pentanediol in furfural hydrogenation. Full article
(This article belongs to the Special Issue Sustainable Applications in Surface Chemistry and Catalysis)
Figures

Graphical abstract

Open AccessArticle An Efficient Photocatalyst for Fast Reduction of Cr(VI) by Ultra-Trace Silver Enhanced Titania in Aqueous Solution
Catalysts 2018, 8(6), 251; https://doi.org/10.3390/catal8060251
Received: 10 May 2018 / Revised: 12 June 2018 / Accepted: 14 June 2018 / Published: 19 June 2018
PDF Full-text (3959 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
For the purpose of establishing a simple route to prepare a metal-semiconductor hybrid catalyst efficiently and reduce its cost through precise doping noble metals. In this study, ultra-trace silver doped TiO2 photocatalysts were fabricated via a “green” ultrasonic impregnation-assisted photoreduction strategy in
[...] Read more.
For the purpose of establishing a simple route to prepare a metal-semiconductor hybrid catalyst efficiently and reduce its cost through precise doping noble metals. In this study, ultra-trace silver doped TiO2 photocatalysts were fabricated via a “green” ultrasonic impregnation-assisted photoreduction strategy in an ethanol system, and its photocatalytic performance was systematically investigated by utilizing Cr(VI) as the model contaminant. A schottky energy barrier was constructed in Ag@TiO2, which served as a recombination center and possessed superior photocatalytic activity for Cr(VI) reduction. The obtained catalysts exhibited a significant e/h+ separation efficiency which directly led to an obvious photocatalytic property enhancement. Then, the resultant Ag@TiO2 (0.06 wt %, 30 min irradiation) showed about 2.5 times the activity as that of commercial P25 NPs for Cr(VI) degradation. Moreover, after five cycles, it still maintained considerably high catalytic ability (62%). This work provides a deep insight into preparation techniques of metal-semiconductor photocatalyst and broadens their application prospect. Full article
Figures

Graphical abstract

Open AccessArticle Diastereoselective Synthesis of 7,8-Carvone Epoxides
Catalysts 2018, 8(6), 250; https://doi.org/10.3390/catal8060250
Received: 4 June 2018 / Revised: 15 June 2018 / Accepted: 16 June 2018 / Published: 19 June 2018
PDF Full-text (1731 KB) | HTML Full-text | XML Full-text
Abstract
The synthesis of the two 7,8-epoxides of carvone has been attained using organocatalysis in a two-step synthetic route through a bromoester intermediate. Among the different reaction conditions tested for the bromination reaction, moderate yields and diastereoselection are achieved using proline, quinidine, and diphenylprolinol,
[...] Read more.
The synthesis of the two 7,8-epoxides of carvone has been attained using organocatalysis in a two-step synthetic route through a bromoester intermediate. Among the different reaction conditions tested for the bromination reaction, moderate yields and diastereoselection are achieved using proline, quinidine, and diphenylprolinol, yielding the corresponding bromoesters that were transformed separately into their epoxides, obtaining the enantiopure products. Full article
(This article belongs to the Special Issue Catalyzed Synthesis of Natural Products)
Figures

Graphical abstract

Open AccessCommunication Enzymatic Synthesis of Thioesters from Thiols and Vinyl Esters in a Continuous-Flow Microreactor
Catalysts 2018, 8(6), 249; https://doi.org/10.3390/catal8060249
Received: 16 May 2018 / Revised: 6 June 2018 / Accepted: 14 June 2018 / Published: 16 June 2018
PDF Full-text (8154 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The preparation of thioesters through the lipase-catalysed transesterification reaction of thiols with vinyl carboxyl esters is described. The reactions were carried out by Lipase TL IM from Thermomyces lanuginosus as a catalyst and performed under a continuous flow microreactor. We first found that
[...] Read more.
The preparation of thioesters through the lipase-catalysed transesterification reaction of thiols with vinyl carboxyl esters is described. The reactions were carried out by Lipase TL IM from Thermomyces lanuginosus as a catalyst and performed under a continuous flow microreactor. We first found that lipase TL IM can be used in the reaction of thioester synthesis with high efficiency. Various reaction parameters were investigated including substrate molar ratio, reaction time, and temperature. Maximum conversion (96%) was obtained under the optimal condition of a substrate molar ratio of 1:2 (4-methylbenzyl mercaptan:vinyl esters) at 50 °C for about 30 min. Compared with other methods, the salient features of this work include mild reaction conditions (50 °C), short reaction times (30 min), high yields, and environment-friendliness. Full article
Figures

Figure 1

Open AccessArticle Mode Transition of Filaments in Packed-Bed Dielectric Barrier Discharges
Catalysts 2018, 8(6), 248; https://doi.org/10.3390/catal8060248
Received: 15 May 2018 / Revised: 12 June 2018 / Accepted: 13 June 2018 / Published: 15 June 2018
PDF Full-text (5364 KB) | HTML Full-text | XML Full-text
Abstract
We investigated the mode transition from volume to surface discharge in a packed bed dielectric barrier discharge reactor by a two-dimensional particle-in-cell/Monte Carlo collision method. The calculations are performed at atmospheric pressure for various driving voltages and for gas mixtures with different N
[...] Read more.
We investigated the mode transition from volume to surface discharge in a packed bed dielectric barrier discharge reactor by a two-dimensional particle-in-cell/Monte Carlo collision method. The calculations are performed at atmospheric pressure for various driving voltages and for gas mixtures with different N2 and O2 compositions. Our results reveal that both a change of the driving voltage and gas mixture can induce mode transition. Upon increasing voltage, a mode transition from hybrid (volume+surface) discharge to pure surface discharge occurs, because the charged species can escape much more easily to the beads and charge the bead surface due to the strong electric field at high driving voltage. This significant surface charging will further enhance the tangential component of the electric field along the dielectric bead surface, yielding surface ionization waves (SIWs). The SIWs will give rise to a high concentration of reactive species on the surface, and thus possibly enhance the surface activity of the beads, which might be of interest for plasma catalysis. Indeed, electron impact excitation and ionization mainly take place near the bead surface. In addition, the propagation speed of SIWs becomes faster with increasing N2 content in the gas mixture, and slower with increasing O2 content, due to the loss of electrons by attachment to O2 molecules. Indeed, the negative O2 ion density produced by electron impact attachment is much higher than the electron and positive O2+ ion density. The different ionization rates between N2 and O2 gases will create different amounts of electrons and ions on the dielectric bead surface, which might also have effects in plasma catalysis. Full article
(This article belongs to the Special Issue Plasma Catalysis)
Figures

Figure 1

Open AccessFeature PaperArticle Simulating Real World Soot-Catalyst Contact Conditions for Lab-Scale Catalytic Soot Oxidation Studies
Catalysts 2018, 8(6), 247; https://doi.org/10.3390/catal8060247
Received: 1 June 2018 / Revised: 10 June 2018 / Accepted: 12 June 2018 / Published: 14 June 2018
PDF Full-text (3980 KB) | HTML Full-text | XML Full-text
Abstract
In diesel soot oxidation studies, both well-defined model soot and a reliable means to simulate realistic contact conditions with catalysts are crucial. This study is the first attempt in the field to establish a lab-scale continuous flame soot deposition method in simulating the
[...] Read more.
In diesel soot oxidation studies, both well-defined model soot and a reliable means to simulate realistic contact conditions with catalysts are crucial. This study is the first attempt in the field to establish a lab-scale continuous flame soot deposition method in simulating the “contact condition” of soot and a structured diesel particulate filter (DPF) catalyst. The properties of this flame soot were examined by means of X-ray diffraction (XRD) and transmission electron microscopy (TEM) for structure analysis, Brunauer-Emmett-Teller (BET) for surface area analysis, and thermogravimetric analysis (TGA) for reactivity and kinetics analysis. For validation purposes, catalytic oxidation of Tiki® soot using the simulated contact condition was conducted to compare with the diesel particulates collected from a real diesel engine exhaust system. It was found that the flame soot is more uniform and controllable than similar samples of collected diesel particulates. The change in T50 due to the presence of the catalyst is very similar in both cases, implying that the flame deposit method is able to produce comparably realistic contact conditions to that resulting from the real exhaust system. Comparing against the expensive engine testing, this novel method allows researchers to quickly set up a procedure in the laboratory scale to reveal the catalytic soot oxidation properties in a comparable loose contact condition. Full article
(This article belongs to the Special Issue Catalytic Oxidation in Environmental Protection)
Figures

Graphical abstract

Open AccessArticle Synthesis of Sulfur-Resistant TiO2-CeO2 Composite and Its Catalytic Performance in the Oxidation of a Soluble Organic Fraction from Diesel Exhaust
Catalysts 2018, 8(6), 246; https://doi.org/10.3390/catal8060246
Received: 13 May 2018 / Revised: 8 June 2018 / Accepted: 11 June 2018 / Published: 14 June 2018
PDF Full-text (1825 KB) | HTML Full-text | XML Full-text
Abstract
Sulfur poisoning is one of the most important factors deteriorating the purification efficiency of diesel exhaust after-treatment system, thus improving the sulfur resistibility of catalysts is imperative. Herein, ceria oxygen storage material was introduced into a sulfur-resistant titania by a co-precipitation method, and
[...] Read more.
Sulfur poisoning is one of the most important factors deteriorating the purification efficiency of diesel exhaust after-treatment system, thus improving the sulfur resistibility of catalysts is imperative. Herein, ceria oxygen storage material was introduced into a sulfur-resistant titania by a co-precipitation method, and the sulfur resistibility and catalytic activity of prepared TiO2-CeO2 composite in the oxidation of diesel soluble organic fraction (SOF) were studied. Catalytic performance testing results show that the CeO2 modification significantly improves the catalytic SOF purification efficiency of TiO2-CeO2 catalyst. SO2 uptake and energy-dispersive X-ray (EDX) results suggest that the ceria doping does not debase the excellent sulfur resistibility of bare TiO2, the prepared TiO2-CeO2 catalyst exhibits obviously better sulfur resistibility than the CeO2 and commercial CeO2-ZrO2-Al2O3. X-ray powder diffraction (XRD) and Raman spectra indicate that cerium ions can enter into the TiO2 lattice and not form complete CeO2 crystals. X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR) and oxygen storage capacity (OSC) testing results imply that the addition of CeO2 in TiO2-CeO2 catalyst can significantly enhance the surface oxygen concentration and oxygen storage capacity of TiO2-CeO2. Full article
(This article belongs to the Special Issue Emissions Control Catalysis)
Figures

Figure 1

Open AccessArticle Carbon Supported Multi-Branch Nitrogen-Containing Polymers as Oxygen Reduction Catalysts
Catalysts 2018, 8(6), 245; https://doi.org/10.3390/catal8060245
Received: 13 May 2018 / Revised: 1 June 2018 / Accepted: 8 June 2018 / Published: 12 June 2018
PDF Full-text (3453 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A composite catalyst was obtained by covalently linking G4-NH2 dendrimers and 1,10-phenanthroline-5-carboxylic acid on the surface of carbon powder, and the composite was named as PMPhen/C. In order to improve the catalytic performance of the composite, copper ions (II) were introduced to
[...] Read more.
A composite catalyst was obtained by covalently linking G4-NH2 dendrimers and 1,10-phenanthroline-5-carboxylic acid on the surface of carbon powder, and the composite was named as PMPhen/C. In order to improve the catalytic performance of the composite, copper ions (II) were introduced to PMPhen/C by complex to form the PMPhen-Cu/C catalyst. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were applied to investigate the surface microstructure and elemental compositions of the catalysts. The results from electrochemical analysis show that PMPhen/C reduced oxygen to hydrogen peroxide (H2O2) through a two-electron transfer process. PMPhen-Cu/C could reduce oxygen to water through a four-electron pathway. Except the slightly lower initial reduction potential, PMPhen-Cu/C has a comparable oxygen reduction ability (ORR) to that of the commercially available Pt/C catalyst, which makes it a potential candidate as the cathodic catalyst in some fuel cells running in neutral medium, such as a microbial fuel cell. Full article
(This article belongs to the Special Issue Advances in Fuel Cell Catalyst)
Figures

Graphical abstract

Open AccessArticle Theoretical Study of the Mechanism for CO2 Hydrogenation to Methanol Catalyzed by trans-RuH2(CO)(dpa)
Catalysts 2018, 8(6), 244; https://doi.org/10.3390/catal8060244
Received: 6 May 2018 / Revised: 30 May 2018 / Accepted: 8 June 2018 / Published: 11 June 2018
PDF Full-text (3343 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this work, the reaction mechanism for the conversion of CO2 and H2 to methanol has been researched by density functional theory (DFT). The production of methanol from CO2 and H2 is catalyzed by a univocal bifunctional pincer-type complex
[...] Read more.
In this work, the reaction mechanism for the conversion of CO2 and H2 to methanol has been researched by density functional theory (DFT). The production of methanol from CO2 and H2 is catalyzed by a univocal bifunctional pincer-type complex trans-RuH2(CO)(dpa) (dpa = bis-(2-diphenylphosphinoethyl)amine). The reaction mechanism includes three continuous catalytic processes: (1) CO2 is converted to formic acid; (2) formic acid is converted to formaldehyde and water; (3) formaldehyde is converted to methanol. By computing the catalytic processes, we have shown that the rate-limiting step in the whole process is the direct cleavage of H2. The calculated largest free energy barrier is 21.6 kcal/mol. However, with the help of water, the free energy barrier can be lowered to 12.7 kcal/mol, which suggests viability of trans-RuH2(CO)(dpa) as a catalyst for the direct conversion of CO2 and H2 to methanol. Full article
(This article belongs to the Special Issue Catalysis and Catalytic Processes for CO2 Conversion)
Figures

Graphical abstract

Open AccessArticle An Iron-Based Catalyst with Multiple Active Components Synergetically Improved Electrochemical Performance for Oxygen Reduction Reaction
Catalysts 2018, 8(6), 243; https://doi.org/10.3390/catal8060243
Received: 18 May 2018 / Revised: 4 June 2018 / Accepted: 4 June 2018 / Published: 7 June 2018
PDF Full-text (5185 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Lack of highly active and stable non-precious metal catalysts (NPMCs) as an alternative to Pt for oxygen reduction reaction (ORR) in the application of zinc-air batteries and proton-exchange membrane fuel cells (PEMFCs) significantly hinders the commercialization of these energy devices. Herein, we synthesize
[...] Read more.
Lack of highly active and stable non-precious metal catalysts (NPMCs) as an alternative to Pt for oxygen reduction reaction (ORR) in the application of zinc-air batteries and proton-exchange membrane fuel cells (PEMFCs) significantly hinders the commercialization of these energy devices. Herein, we synthesize a new type of catalyst composed of nitrogen-coordinated and carbon-embedded metal (Fe-N/Fe3C/Fe/C) by pyrolyzing a precursor at 800 °C under argon atmosphere, and the precursor is obtained by heating a mixture of the tri (dipyrido [3,2-a:2′,3′-c] phenazinyl) phenylene and FeSO4 at 160 °C in a Teflon-lined stainless autoclave. The resultant Fe-N/Fe3C/Fe/C-800 exhibits the highest activity for the ORR with onset and half-wave potentials of 1.00 and 0.82 V in 0.1 M KOH, respectively. Furthermore, it also shows a potential ORR activity in 0.1 M HClO4, which is promising for the application in commercial PEMFCs. Most importantly, Fe-N/Fe3C/Fe/C-800 exhibits a comparable electrochemical performance to Pt/C for the application in zinc-air battery. The specific capacity approaches 700 mAh·g−1, and the maximum power density is also comparable to that of Pt/C at the current density of 200 mA·cm−2. The work opens up a simple strategy to prepare ORR electrocatalyts for zinc-air battery and PEMFCs. Full article
(This article belongs to the Special Issue Catalysts for Oxygen Reduction Reaction)
Figures

Graphical abstract

Open AccessArticle The Synthetic Potential of Fungal Feruloyl Esterases: A Correlation with Current Classification Systems and Predicted Structural Properties
Catalysts 2018, 8(6), 242; https://doi.org/10.3390/catal8060242
Received: 21 May 2018 / Revised: 31 May 2018 / Accepted: 1 June 2018 / Published: 7 June 2018
PDF Full-text (3589 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Twenty-eight fungal feruloyl esterases (FAEs) were evaluated for their synthetic abilities in a ternary system of n-hexane: t-butanol: 100 mM MOPS-NaOH pH 6.0 forming detergentless microemulsions. Five main derivatives were synthesized, namely prenyl ferulate, prenyl caffeate, butyl ferulate, glyceryl ferulate, and
[...] Read more.
Twenty-eight fungal feruloyl esterases (FAEs) were evaluated for their synthetic abilities in a ternary system of n-hexane: t-butanol: 100 mM MOPS-NaOH pH 6.0 forming detergentless microemulsions. Five main derivatives were synthesized, namely prenyl ferulate, prenyl caffeate, butyl ferulate, glyceryl ferulate, and l-arabinose ferulate, offering, in general, higher yields when more hydrophilic alcohol substitutions were used. Acetyl xylan esterase-related FAEs belonging to phylogenetic subfamilies (SF) 5 and 6 showed increased synthetic yields among tested enzymes. In particular, it was shown that FAEs belonging to SF6 generally transesterified aliphatic alcohols more efficiently while SF5 members preferred bulkier l-arabinose. Predicted surface properties and structural characteristics were correlated with the synthetic potential of selected tannase-related, acetyl-xylan-related, and lipase-related FAEs (SF1-2, -6, -7 members) based on homology modeling and small molecular docking simulations. Full article
(This article belongs to the Special Issue Novel Enzyme and Whole-Cell Biocatalysis)
Figures

Figure 1

Open AccessArticle The Promoting Effect of Ce on the Performance of Au/CexZr1−xO2 for γ-Valerolactone Production from Biomass-Based Levulinic Acid and Formic Acid
Catalysts 2018, 8(6), 241; https://doi.org/10.3390/catal8060241
Received: 28 April 2018 / Revised: 31 May 2018 / Accepted: 2 June 2018 / Published: 7 June 2018
PDF Full-text (3541 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The production of γ-valerolactone (GVL) directly from biomass-based levulinic acid (LA) and formic acid (FA) without extra hydrogen source is attractive but challenging, due to the requirement of a highly active and stable catalyst. In present work, Au/CexZr1−xO2
[...] Read more.
The production of γ-valerolactone (GVL) directly from biomass-based levulinic acid (LA) and formic acid (FA) without extra hydrogen source is attractive but challenging, due to the requirement of a highly active and stable catalyst. In present work, Au/CexZr1−xO2 with various Ce/Zr ratios were prepared as the catalyst for GVL production from LA with the equivalent molar FA, and characterized by XRD, Raman-spectra, BET, NH3-TPD, TEM and XPS. It was found that the doped Ce in Au/CexZr1−xO2 catalyst could improve the reduction of Au3+ to metallic Au0, and also promoted the dispersion of Au0, yielding uniform Au0 nanoparticles with a small average particle size of about 2.4 nm, thus enhancing both the decomposition of FA to CO-free H2 and the hydrogenation of LA. Meanwhile, a certain amount of doped Ce (x ≤ 0.4) could facilitate the formation of tetragonal phase (the most desired structure on LA conversion to GVL), and increase the amount of weak and medium-strength acidic sites of catalyst, thereby promoting the dehydration reaction of the intermediate derived from LA hydrogenation. Au/Ce0.4Zr0.6O2 catalyst exhibited the best catalytic activity, achieving 90.8% of LA conversion and 83.5% of GVL yield (TON = 2047.8), with good recyclability, and the activity showed no obvious change after 5 runs. Full article
Figures

Graphical abstract

Open AccessFeature PaperArticle Synergistic Effect of Cu2O and Urea as Modifiers of TiO2 for Enhanced Visible Light Activity
Catalysts 2018, 8(6), 240; https://doi.org/10.3390/catal8060240
Received: 14 March 2018 / Revised: 1 June 2018 / Accepted: 1 June 2018 / Published: 6 June 2018
PDF Full-text (2111 KB) | HTML Full-text | XML Full-text
Abstract
Low cost compounds, i.e., Cu2O and urea, were used as TiO2 modifiers to introduce visible light activity. Simple and cheap methods were applied to synthesize an efficient and stable nanocomposite photocatalytic material. First, the core-shell structure TiO2–polytriazine derivatives
[...] Read more.
Low cost compounds, i.e., Cu2O and urea, were used as TiO2 modifiers to introduce visible light activity. Simple and cheap methods were applied to synthesize an efficient and stable nanocomposite photocatalytic material. First, the core-shell structure TiO2–polytriazine derivatives were prepared. Thereafter, Cu2O was added as the second semiconductor to form a dual heterojunction system. Enhanced visible light activity was found for the above-mentioned nanocomposite, confirming a synergistic effect of Cu2O and urea (via polytriazine derivatives on titania surface). Two possible mechanisms of visible light activity of the considered material were proposed regarding the type II heterojunction and Z-scheme through the essential improvement of the charge separation effect. Full article
(This article belongs to the Special Issue Nanomaterials for Environmental Purification and Energy Conversion)
Figures

Figure 1

Open AccessArticle A Novel High-Activity Zn-Co Catalyst for Acetylene Acetoxylation
Catalysts 2018, 8(6), 239; https://doi.org/10.3390/catal8060239
Received: 26 April 2018 / Revised: 24 May 2018 / Accepted: 1 June 2018 / Published: 6 June 2018
PDF Full-text (2305 KB) | HTML Full-text | XML Full-text
Abstract
In this paper, Zn(OAc)2/AC and Zn-Co/AC catalysts were prepared and applied in an acetylene acetoxylation reaction. Compared with monometallic Zn(OAc)2/AC catalyst, which is widely applied in industry, the Zn-Co catalysts exhibited excellent catalytic performance. Transmission electron microscopy results displayed
[...] Read more.
In this paper, Zn(OAc)2/AC and Zn-Co/AC catalysts were prepared and applied in an acetylene acetoxylation reaction. Compared with monometallic Zn(OAc)2/AC catalyst, which is widely applied in industry, the Zn-Co catalysts exhibited excellent catalytic performance. Transmission electron microscopy results displayed that the addition of cobalt improved the dispersity of zinc acetate particles and inhibited catalyst sintering on the catalyst surface. X-ray photoelectron spectra suggested that the Co additive changed the electron density of zinc acetate probably because of the interaction between Zn and Co species. Temperature programmed desorption analysis demonstrated Co additive strengthened the adsorption of acetic acid and weakened the adsorption of acetylene. Full article
(This article belongs to the Special Issue Heterogeneous Acid Catalyst)
Figures

Graphical abstract

Back to Top