Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Remote Sens., Volume 6, Issue 4 (April 2014), Pages 2628-3532

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-45
Export citation of selected articles as:
Open AccessArticle Mapping Plant Functional Types over Broad Mountainous Regions: A Hierarchical Soft Time-Space Classification Applied to the Tibetan Plateau
Remote Sens. 2014, 6(4), 3511-3532; https://doi.org/10.3390/rs6043511
Received: 14 February 2014 / Revised: 25 March 2014 / Accepted: 15 April 2014 / Published: 23 April 2014
Cited by 5 | PDF Full-text (3902 KB) | HTML Full-text | XML Full-text
Abstract
Research on global climate change requires plant functional type (PFT) products. Although several PFT mapping procedures for remote sensing imagery are being used, none of them appears to be specifically designed to map and evaluate PFTs over broad mountainous areas which are highly
[...] Read more.
Research on global climate change requires plant functional type (PFT) products. Although several PFT mapping procedures for remote sensing imagery are being used, none of them appears to be specifically designed to map and evaluate PFTs over broad mountainous areas which are highly relevant regions to identify and analyze the response of natural ecosystems. We present a methodology for generating soft classifications of PFTs from remotely sensed time series that are based on a hierarchical strategy by integrating time varying integrated NDVI and phenological information with topography: (i) Temporal variability: a Fourier transform of a vegetation index (MODIS NDVI, 2006 to 2010). (ii) Spatial partitioning: a primary image segmentation based on a small number of thresholds applied to the Fourier amplitude. (iii) Classification by a supervised soft classification step is based on a normalized distance metric constructed from a subset of Fourier coefficients and complimentary altitude data from a digital elevation model. Applicability and effectiveness is tested for the eastern Tibetan Plateau. A classification nomenclature is determined from temporally stable pixels in the MCD12Q1 time series. Overall accuracy statistics of the resulting classification reveal a gain of about 7% from 64.4% compared to 57.7% by the MODIS PFT products. Full article
Open AccessArticle Remote Estimation of Chlorophyll-a in Inland Waters by a NIR-Red-Based Algorithm: Validation in Asian Lakes
Remote Sens. 2014, 6(4), 3492-3510; https://doi.org/10.3390/rs6043492
Received: 8 October 2013 / Revised: 11 March 2014 / Accepted: 31 March 2014 / Published: 22 April 2014
Cited by 9 | PDF Full-text (1336 KB) | HTML Full-text | XML Full-text
Abstract
Satellite remote sensing is a highly useful tool for monitoring chlorophyll-a concentration (Chl-a) in water bodies. Remote sensing algorithms based on near-infrared-red (NIR-red) wavelengths have demonstrated great potential for retrieving Chl-a in inland waters. This study tested the performance
[...] Read more.
Satellite remote sensing is a highly useful tool for monitoring chlorophyll-a concentration (Chl-a) in water bodies. Remote sensing algorithms based on near-infrared-red (NIR-red) wavelengths have demonstrated great potential for retrieving Chl-a in inland waters. This study tested the performance of a recently developed NIR-red based algorithm, SAMO-LUT (Semi-Analytical Model Optimizing and Look-Up Tables), using an extensive dataset collected from five Asian lakes. Results demonstrated that Chl-a retrieved by the SAMO-LUT algorithm was strongly correlated with measured Chl-a (R2 = 0.94), and the root-mean-square error (RMSE) and normalized root-mean-square error (NRMS) were 8.9 mg∙m−3 and 72.6%, respectively. However, the SAMO-LUT algorithm yielded large errors for sites where Chl-a was less than 10 mg∙m−3 (RMSE = 1.8 mg∙m−3 and NRMS = 217.9%). This was because differences in water-leaving radiances at the NIR-red wavelengths (i.e., 665 nm, 705 nm and 754 nm) used in the SAMO-LUT were too small due to low concentrations of water constituents. Using a blue-green algorithm (OC4E) instead of the SAMO-LUT for the waters with low constituent concentrations would have reduced the RMSE and NRMS to 1.0 mg∙m−3 and 16.0%, respectively. This indicates (1) the NIR-red algorithm does not work well when water constituent concentrations are relatively low; (2) different algorithms should be used in light of water constituent concentration; and thus (3) it is necessary to develop a classification method for selecting the appropriate algorithm. Full article
Open AccessArticle Multisource Single-Tree Inventory in the Prediction of Tree Quality Variables and Logging Recoveries
Remote Sens. 2014, 6(4), 3475-3491; https://doi.org/10.3390/rs6043475
Received: 3 December 2013 / Revised: 14 April 2014 / Accepted: 15 April 2014 / Published: 22 April 2014
Cited by 14 | PDF Full-text (1378 KB) | HTML Full-text | XML Full-text
Abstract
The stem diameter distribution, stem form and quality information must be measured as accurately as possible to optimize cutting. For a detailed measurement of the stands, we developed and demonstrated the use of a multisource single-tree inventory (MS-STI). The two major bottlenecks in
[...] Read more.
The stem diameter distribution, stem form and quality information must be measured as accurately as possible to optimize cutting. For a detailed measurement of the stands, we developed and demonstrated the use of a multisource single-tree inventory (MS-STI). The two major bottlenecks in the current airborne laser scanning (ALS)-based single-tree-level inventory, tree detection and tree species recognition, are avoided in MS-STI. In addition to airborne 3D data, such as ALS, MS-STI requires an existing tree map with tree species information as the input information. In operational forest management, tree mapping would be carried out after or during the first thinning. It should be highlighted that the tree map is a challenging prerequisite, but that the recent development in mobile 2D and 3D laser scanning indicates that the solution is within reach. In our study, the tested input tree map was produced by terrestrial laser scanning (TLS) and by using a Global Navigation Satellite System. Predictors for tree quality attributes were extracted from ALS data or digital stereo imagery (DSI) and used in the nearest-neighbor estimation approach. Stem distribution was compiled by summing the predicted single-tree measures. The accuracy of the MS-STI was validated using harvester data (timber assortments) and field measures (stem diameter, tree height). RMSEs for tree height, diameter, saw log volume and pulpwood volume varied from 4.2% to 5.3%, from 10.9% to 19.9%, from 28.7% to 43.5% and from 125.1% to 134.3%, respectively. Stand-level saw log recoveries differed from −2.2% to 1.3% from the harvester measurements, as the respective differences in pulpwood recovery were between −3.0% and 10.6%. We conclude that MS-STI improves the predictions of stem-diameter distributions and provides accurate estimates for tree quality variables if an accurate tree map is available. Full article
Open AccessArticle Rain-Use-Efficiency: What it Tells us about the Conflicting Sahel Greening and Sahelian Paradox
Remote Sens. 2014, 6(4), 3446-3474; https://doi.org/10.3390/rs6043446
Received: 16 January 2014 / Revised: 3 April 2014 / Accepted: 8 April 2014 / Published: 22 April 2014
Cited by 35 | PDF Full-text (3016 KB) | HTML Full-text | XML Full-text
Abstract
Rain Use Efficiency (RUE), defined as Aboveground Net Primary Production (ANPP) divided by rainfall, is increasingly used to diagnose land degradation. Yet, the outcome of RUE monitoring has been much debated since opposite results were found about land degradation in the Sahel region.
[...] Read more.
Rain Use Efficiency (RUE), defined as Aboveground Net Primary Production (ANPP) divided by rainfall, is increasingly used to diagnose land degradation. Yet, the outcome of RUE monitoring has been much debated since opposite results were found about land degradation in the Sahel region. The debate is fueled by methodological issues, especially when using satellite remote sensing data to estimate ANPP, and by differences in the ecological interpretation. An alternative method which solves part of these issues relies on the residuals of ANPP regressed against rainfall (“ANPP residuals”). In this paper, we use long-term field observations of herbaceous vegetation mass collected in the Gourma region in Mali together with remote sensing data (GIMMS-3g Normalized Difference Vegetation Index) to estimate ANPP, RUE, and the ANPP residuals, over the period 1984–2010. The residuals as well as RUE do not reveal any trend over time over the Gourma region, implying that vegetation is resilient over that period, when data are aggregated at the Gourma scale. We find no conflict between field-derived and satellite-derived results in terms of trends. The nature (linearity) of the ANPP/rainfall relationship is investigated and is found to have no impact on the RUE and residuals interpretation. However, at odds with a stable RUE, an increased run-off coefficient has been observed in the area over the same period, pointing towards land degradation. The divergence of these two indicators of ecosystem resilience (stable RUE) and land degradation (increasing run-off coefficient) is referred to as the “second Sahelian paradox”. When shallow soils and deep soils are examined separately, high resilience is diagnosed on the deep soil sites. However, some of the shallow soils show signs of degradation, being characterized by decreasing vegetation cover and increasing run-off coefficient. Such results show that contrasted changes may co-exist within a region where a strong overall re-greening pattern is observed, highlighting that both the scale of observations and the scale of the processes have to be considered when performing assessments of vegetation changes and land degradation. Full article
(This article belongs to the Special Issue Monitoring Global Vegetation with AVHRR NDVI3g Data (1981-2011))
Figures

Graphical abstract

Open AccessArticle Estimating Fractional Shrub Cover Using Simulated EnMAP Data: A Comparison of Three Machine Learning Regression Techniques
Remote Sens. 2014, 6(4), 3427-3445; https://doi.org/10.3390/rs6043427
Received: 16 January 2014 / Revised: 11 April 2014 / Accepted: 14 April 2014 / Published: 22 April 2014
Cited by 25 | PDF Full-text (2233 KB) | HTML Full-text | XML Full-text
Abstract
Anthropogenic interventions in natural and semi-natural ecosystems often lead to substantial changes in their functioning and may ultimately threaten ecosystem service provision. It is, therefore, necessary to monitor these changes in order to understand their impacts and to support management decisions that help
[...] Read more.
Anthropogenic interventions in natural and semi-natural ecosystems often lead to substantial changes in their functioning and may ultimately threaten ecosystem service provision. It is, therefore, necessary to monitor these changes in order to understand their impacts and to support management decisions that help ensuring sustainability. Remote sensing has proven to be a valuable tool for these purposes, and especially hyperspectral sensors are expected to provide valuable data for quantitative characterization of land change processes. In this study, simulated EnMAP data were used for mapping shrub cover fractions along a gradient of shrub encroachment, in a study region in southern Portugal. We compared three machine learning regression techniques: Support Vector Regression (SVR); Random Forest Regression (RF); and Partial Least Squares Regression (PLSR). Additionally, we compared the influence of training sample size on the prediction performance. All techniques showed reasonably good results when trained with large samples, while SVR always outperformed the other algorithms. The best model was applied to produce a fractional shrub cover map for the whole study area. The predicted patterns revealed a gradient of shrub cover between regions affected by special agricultural management schemes for nature protection and areas without land use incentives. Our results highlight the value of EnMAP data in combination with machine learning regression techniques for monitoring gradual land change processes. Full article
(This article belongs to the Special Issue Analysis of Remote Sensing Image Data)
Open AccessArticle Automatic Descriptor-Based Co-Registration of Frame Hyperspectral Data
Remote Sens. 2014, 6(4), 3409-3426; https://doi.org/10.3390/rs6043409
Received: 18 December 2013 / Revised: 19 February 2014 / Accepted: 27 March 2014 / Published: 17 April 2014
Cited by 12 | PDF Full-text (1887 KB) | HTML Full-text | XML Full-text
Abstract
Frame hyperspectral sensors, in contrast to push-broom or line-scanning ones, produce hyperspectral datasets with, in general, better geometry but with unregistered spectral bands. Being acquired at different instances and due to platform motion and movements (UAVs, aircrafts, etc.), every spectral band is displaced
[...] Read more.
Frame hyperspectral sensors, in contrast to push-broom or line-scanning ones, produce hyperspectral datasets with, in general, better geometry but with unregistered spectral bands. Being acquired at different instances and due to platform motion and movements (UAVs, aircrafts, etc.), every spectral band is displaced and acquired with a different geometry. The automatic and accurate registration of hyperspectral datasets from frame sensors remains a challenge. Powerful local feature descriptors when computed over the spectrum fail to extract enough correspondences and successfully complete the registration procedure. To this end, we propose a generic and automated framework which decomposes the problem and enables the efficient computation of a sufficient amount of accurate correspondences over the given spectrum, without using any ancillary data (e.g., from GPS/IMU). First, the spectral bands are divided in spectral groups according to their wavelength. The spectral borders of each group are not strict and their formulation allows certain overlaps. The spectral variance and proximity determine the applicability of every spectral band to act as a reference during the registration procedure. The proposed decomposition allows the descriptor and the robust estimation process to deliver numerous inliers. The search space of possible solutions has been effectively narrowed by sorting and selecting the optimal spectral bands which under an unsupervised manner can quickly recover hypercube’s geometry. The developed approach has been qualitatively and quantitatively evaluated with six different datasets obtained by frame sensors onboard aerial platforms and UAVs. Experimental results appear promising. Full article
Open AccessArticle A Novel Land Cover Classification Map Based on a MODIS Time-Series in Xinjiang, China
Remote Sens. 2014, 6(4), 3387-3408; https://doi.org/10.3390/rs6043387
Received: 10 February 2014 / Revised: 23 March 2014 / Accepted: 31 March 2014 / Published: 17 April 2014
Cited by 11 | PDF Full-text (2931 KB) | HTML Full-text | XML Full-text
Abstract
Accurate mapping of land cover on a regional scale is useful for climate and environmental modeling. In this study, we present a novel land cover classification product based on spectral and phenological information for the Xinjiang Uygur Autonomous Region (XUAR) in China. The
[...] Read more.
Accurate mapping of land cover on a regional scale is useful for climate and environmental modeling. In this study, we present a novel land cover classification product based on spectral and phenological information for the Xinjiang Uygur Autonomous Region (XUAR) in China. The product is derived at a 500 m spatial resolution using an innovative approach employing moderate resolution imaging spectroradiometer (MODIS) surface reflectance and the enhanced vegetation index (EVI) time series. The classification results capture regional scale land cover patterns and small-scale phenomena. By applying a regionally specified classification scheme, an extensive collection of training data, and regionally tuned data processing, the quality and consistency of the phenological maps are significantly improved. With the ability to provide an updated land cover product considering the heterogenic environmental and climatic conditions, the novel land cover map is valuable for research related to environmental change in this region. Full article
Open AccessArticle Quantifying Spatial Heterogeneity in Urban Landscapes: Integrating Visual Interpretation and Object-Based Classification
Remote Sens. 2014, 6(4), 3369-3386; https://doi.org/10.3390/rs6043369
Received: 10 January 2014 / Revised: 21 March 2014 / Accepted: 26 March 2014 / Published: 16 April 2014
Cited by 22 | PDF Full-text (1933 KB) | HTML Full-text | XML Full-text
Abstract
Describing and quantifying the spatial heterogeneity of land cover in urban systems is crucial for developing an ecological understanding of cities. This paper presents a new approach to quantifying the fine-scale heterogeneity in urban landscapes that capitalizes on the strengths of two commonly
[...] Read more.
Describing and quantifying the spatial heterogeneity of land cover in urban systems is crucial for developing an ecological understanding of cities. This paper presents a new approach to quantifying the fine-scale heterogeneity in urban landscapes that capitalizes on the strengths of two commonly used approaches—visual interpretation and object-based image analysis. This new approach integrates the ability of humans to detect pattern with an object-based image analysis that accurately and efficiently quantifies the components that give rise to that pattern. Patches that contain a mix of built and natural land cover features were first delineated through visual interpretation. These patches served as pre-defined boundaries for finer-scale segmentation and classification of within-patch land cover features which were classified using object-based image analysis. Patches were then classified based on the within-patch proportion cover of features. We applied this approach to the Gwynns Falls watershed in Baltimore, Maryland, USA. The object-based classification approach proved to be effective for classifying within-patch land cover features. The overall accuracy of the classification maps of 1999 and 2004 were 92.3% and 93.7%, respectively. This exercise demonstrates that by integrating visual interpretation with object-based classification, the fine-scale spatial heterogeneity in urban landscapes and land cover change can be described and quantified in a more efficient and ecologically meaningful way than either purely automated or visual methods alone. This new approach provides a tool that allows us to quantify the structure of the urban landscape including both built and non-built components that will better accommodate ecological research linking system structure to ecological processes. Full article
(This article belongs to the Special Issue Advances in Geographic Object-Based Image Analysis (GEOBIA))
Open AccessArticle A Hierarchical Multi-Temporal InSAR Method for Increasing the Spatial Density of Deformation Measurements
Remote Sens. 2014, 6(4), 3349-3368; https://doi.org/10.3390/rs6043349
Received: 12 February 2014 / Revised: 1 April 2014 / Accepted: 4 April 2014 / Published: 15 April 2014
Cited by 7 | PDF Full-text (4154 KB) | HTML Full-text | XML Full-text
Abstract
Point-like targets are useful in providing surface deformation with the time series of synthetic aperture radar (SAR) images using the multi-temporal interferometric synthetic aperture radar (MTInSAR) methodology. However, the spatial density of point-like targets is low, especially in non-urban areas. In this paper,
[...] Read more.
Point-like targets are useful in providing surface deformation with the time series of synthetic aperture radar (SAR) images using the multi-temporal interferometric synthetic aperture radar (MTInSAR) methodology. However, the spatial density of point-like targets is low, especially in non-urban areas. In this paper, a hierarchical MTInSAR method is proposed to increase the spatial density of deformation measurements by tracking both the point-like targets and the distributed targets with the temporal steadiness of radar backscattering. To efficiently reduce error propagation, the deformation rates on point-like targets with lower amplitude dispersion index values are first estimated using a least squared estimator and a region growing method. Afterwards, the distributed targets are identified using the amplitude dispersion index and a Pearson correlation coefficient through a multi-level processing strategy. Meanwhile, the deformation rates on distributed targets are estimated during the multi-level processing. The proposed MTInSAR method has been tested for subsidence detection over a suburban area located in Tianjin, China using 40 high-resolution TerraSAR-X images acquired between 2009 and 2010, and validated using the ground-based leveling measurements. The experiment results indicate that the spatial density of deformation measurements can be increased by about 250% and that subsidence accuracy can reach to the millimeter level by using the hierarchical MTInSAR method. Full article
Open AccessArticle Evaluating Parameter Adjustment in the MODIS Gross Primary Production Algorithm Based on Eddy Covariance Tower Measurements
Remote Sens. 2014, 6(4), 3321-3348; https://doi.org/10.3390/rs6043321
Received: 4 January 2014 / Revised: 24 March 2014 / Accepted: 31 March 2014 / Published: 14 April 2014
Cited by 12 | PDF Full-text (1667 KB) | HTML Full-text | XML Full-text
Abstract
How well parameterization will improve gross primary production (GPP) estimation using the MODerate-resolution Imaging Spectroradiometer (MODIS) algorithm has been rarely investigated. We adjusted the parameters in the algorithm for 21 selected eddy-covariance flux towers which represented nine typical plant functional types (PFTs). We
[...] Read more.
How well parameterization will improve gross primary production (GPP) estimation using the MODerate-resolution Imaging Spectroradiometer (MODIS) algorithm has been rarely investigated. We adjusted the parameters in the algorithm for 21 selected eddy-covariance flux towers which represented nine typical plant functional types (PFTs). We then compared these estimates of the MOD17A2 product, by the MODIS algorithm with default parameters in the Biome Property Look-Up Table, and by a two-leaf Farquhar model. The results indicate that optimizing the maximum light use efficiency (εmax) in the algorithm would improve GPP estimation, especially for deciduous vegetation, though it could not compensate the underestimation during summer caused by the one-leaf upscaling strategy. Adding the soil water factor to the algorithm would not significantly affect performance, but it could make the adjusted εmax more robust for sites with the same PFT and among different PFTs. Even with adjusted parameters, both one-leaf and two-leaf models would not capture seasonally photosynthetic dynamics, thereby we suggest that further improvement in GPP estimaiton is required by taking into consideration seasonal variations of the key parameters and variables. Full article
Figures

Graphical abstract

Open AccessArticle Extraction of Urban Power Lines from Vehicle-Borne LiDAR Data
Remote Sens. 2014, 6(4), 3302-3320; https://doi.org/10.3390/rs6043302
Received: 12 October 2013 / Revised: 26 February 2014 / Accepted: 24 March 2014 / Published: 11 April 2014
Cited by 20 | PDF Full-text (579 KB) | HTML Full-text | XML Full-text
Abstract
Airborne LiDAR has been traditionally used for power line cruising. Nevertheless, data acquisition with airborne LiDAR is constrained by the complex environments in urban areas as well as the multiple parallel line structures on the same power line tower, which means it is
[...] Read more.
Airborne LiDAR has been traditionally used for power line cruising. Nevertheless, data acquisition with airborne LiDAR is constrained by the complex environments in urban areas as well as the multiple parallel line structures on the same power line tower, which means it is not directly applicable to the extraction of urban power lines. Vehicle-borne LiDAR system has its advantages upon airborne LiDAR and this paper tries to utilize vehicle-borne LiDAR data for the extraction of urban power lines. First, power line points are extracted using a voxel-based hierarchical method in which geometric features of each voxel are calculated. Then, a bottom-up method for filtering the power lines belonging to each power line is proposed. The initial clustering and clustering recovery procedures are conducted iteratively to identify each power line. The final experiment demonstrates the high precision of this technique. Full article
Open AccessArticle Segmentation of Sloped Roofs from Airborne LiDAR Point Clouds Using Ridge-Based Hierarchical Decomposition
Remote Sens. 2014, 6(4), 3284-3301; https://doi.org/10.3390/rs6043284
Received: 20 November 2013 / Revised: 27 February 2014 / Accepted: 24 March 2014 / Published: 11 April 2014
Cited by 6 | PDF Full-text (1623 KB) | HTML Full-text | XML Full-text
Abstract
This paper presents a new approach for roof facet segmentation based on ridge detection and hierarchical decomposition along ridges. The proposed approach exploits the fact that every roof can be composed of a set of gabled roofs and single facets which are separated
[...] Read more.
This paper presents a new approach for roof facet segmentation based on ridge detection and hierarchical decomposition along ridges. The proposed approach exploits the fact that every roof can be composed of a set of gabled roofs and single facets which are separated by the gabled roofs. In this work, firstly, building footprints stored in OpenStreetMap are used to extract 3D points on roofs. Then, roofs are segmented into roof facets. The algorithm starts with detecting roof ridges using RANSAC since they are parallel to the horizon and situated on the top of the roof. The roof ridges are utilized to indicate the location and direction of the gabled roof. Thus, points on the two roof facets along a roof ridge can be identified based on their connectivity and coplanarity. The results of the segmentation benefit the further process of roof reconstruction because many parameters, including the position, angle and size of the gabled roof can be calculated and used as priori knowledge for the model-driven approach, and topologies among the point segments are made known for the data-driven approach. The algorithm has been validated in the test sites of two towns next to Bavaria Forest national park. The experimental results show that building roofs can be segmented with both high correctness and completeness simultaneously. Full article
Open AccessArticle Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011
Remote Sens. 2014, 6(4), 3263-3283; https://doi.org/10.3390/rs6043263
Received: 24 January 2014 / Revised: 27 February 2014 / Accepted: 27 March 2014 / Published: 10 April 2014
Cited by 44 | PDF Full-text (1853 KB) | HTML Full-text | XML Full-text
Abstract
Understanding how the dynamics of vegetation growth respond to climate change at different temporal and spatial scales is critical to projecting future ecosystem dynamics and the adaptation of ecosystems to global change. In this study, we investigated vegetated growth dynamics (annual productivity, seasonality
[...] Read more.
Understanding how the dynamics of vegetation growth respond to climate change at different temporal and spatial scales is critical to projecting future ecosystem dynamics and the adaptation of ecosystems to global change. In this study, we investigated vegetated growth dynamics (annual productivity, seasonality and the minimum amount of vegetated cover) in China and their relations with climatic factors during 1982–2011, using the updated Global Inventory Modeling and Mapping Studies (GIMMS) third generation global satellite Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) dataset and climate data acquired from the National Centers for Environmental Prediction (NCEP). Major findings are as follows: (1) annual mean NDVI over China significantly increased by about 0.0006 per year from 1982 to 2011; (2) of the vegetated area in China, over 33% experienced a significant positive trend in vegetation growth, mostly located in central and southern China; about 21% experienced a significant positive trend in growth seasonality, most of which occurred in northern China (>35°N); (3) changes in vegetation growth dynamics were significantly correlated with air temperature and precipitation (p < 0.001) at a region scale; (4) at the country scale, changes in NDVI was significantly and positively correlated with annual air temperature (r = 0.52, p < 0.01) and not associated with annual precipitation (p > 0.1); (5) of the vegetated area, about 24% showed significant correlations between annual mean NDVI and air temperature (93% positive and remainder negative), and 12% showed significant correlations of annual mean NDVI with annual precipitation (65% positive and 35% negative). The spatiotemporal variations in vegetation growth dynamics were controlled primarily by temperature and secondly by precipitation. Vegetation growth was also affected by human activities; and (6) monthly NDVI was significantly correlated with the preceding month’s temperature and precipitation in western, central and northern China. The effects of a climate lag of more than two months in southern China may be caused mainly by the abundance of precipitation. These findings suggest that continuing efforts to monitor vegetation changes (in situ and satellite observations) over time and at broad scales are greatly needed, and are critical for the management of ecosystems and adapting to global climatic changes. It is likewise difficult to predict well future vegetation growth without linking these observations to mechanistic terrestrial ecosystem processes models that integrate all the satellite and in situ observations. Full article
Open AccessArticle Estimation of Diurnal Cycle of Land Surface Temperature at High Temporal and Spatial Resolution from Clear-Sky MODIS Data
Remote Sens. 2014, 6(4), 3247-3262; https://doi.org/10.3390/rs6043247
Received: 3 March 2014 / Revised: 2 April 2014 / Accepted: 4 April 2014 / Published: 10 April 2014
Cited by 21 | PDF Full-text (2548 KB) | HTML Full-text | XML Full-text
Abstract
The diurnal cycle of land surface temperature (LST) is an important element of the climate system. Geostationary satellites can provide the diurnal cycle of LST with low spatial resolution and incomplete global coverage, which limits its applications in some studies. In this study,
[...] Read more.
The diurnal cycle of land surface temperature (LST) is an important element of the climate system. Geostationary satellites can provide the diurnal cycle of LST with low spatial resolution and incomplete global coverage, which limits its applications in some studies. In this study, we propose a method to estimate the diurnal cycle of LST at high temporal and spatial resolution from clear-sky MODIS data. This method was evaluated using the MSG-SEVIRI-derived LSTs. The results indicate that this method fits the diurnal cycle of LST well, with root mean square error (RMSE) values less than 1 K for most pixels. Because MODIS provides at most four observations per day at a given location, this method was further evaluated using only four MSG-SEVIRI-derived LSTs corresponding to the MODIS overpass times (10:30, 13:30, 22:30, and 01:30 local solar time). The results show that the RMSE values using only four MSG-SEVIRI-derived LSTs are approximately two times larger than those using all LSTs. The spatial distribution of the modeled LSTs at the MODIS pixel scale is presented from 07:00 to 05:00 local solar time of the next day with an increment of 2 hours. The diurnal cycle of the modeled LSTs describes the temporal evolution of the LSTs at the MODIS pixel scale. Full article
Open AccessArticle Prediction of Forest Stand Attributes Using TerraSAR-X Stereo Imagery
Remote Sens. 2014, 6(4), 3227-3246; https://doi.org/10.3390/rs6043227
Received: 12 January 2014 / Revised: 13 March 2014 / Accepted: 4 April 2014 / Published: 10 April 2014
Cited by 9 | PDF Full-text (787 KB) | HTML Full-text | XML Full-text
Abstract
Consistent, detailed and up-to-date forest resource information is required for allocation of forestry activities and national and international reporting obligations. We evaluated the forest stand attribute prediction accuracy when radargrammetry was used to derive height information from TerraSAR-X stereo imagery. Radargrammetric elevations were
[...] Read more.
Consistent, detailed and up-to-date forest resource information is required for allocation of forestry activities and national and international reporting obligations. We evaluated the forest stand attribute prediction accuracy when radargrammetry was used to derive height information from TerraSAR-X stereo imagery. Radargrammetric elevations were normalized to heights above ground using an airborne laser scanning (ALS)-derived digital terrain model (DTM). Derived height metrics were used as predictors in the most similar neighbor (MSN) estimation approach. In total, 207 field measured plots were used in MSN estimation, and the obtained results were validated using 94 stands with an average area of 4.1 ha. The relative root mean square errors for Lorey’s height, basal area, stem volume, and above-ground biomass were 6.7% (1.1 m), 12.0% (2.9 m2/ha), 16.3% (31.1 m3/ha), and 16.1% (15.6 t/ha). Although the prediction accuracies were promising, it should be noted that the predictions included bias. The respective biases were −4.6% (−0.7 m), −6.4% (−1.6 m2/ha), −9.3% (−17.8 m3/ha), and −9.5% (−9.1 t/ha). With detailed DTM, TerraSAR-X stereo radargrammetry-derived forest information appears to be suitable for providing consistent forest resource information over large areas. Full article
Back to Top