
Remote Sens. 2014, 6, 3369-3386; doi:10.3390/rs6043369 

 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Quantifying Spatial Heterogeneity in Urban Landscapes: 

Integrating Visual Interpretation and  

Object-Based Classification 

Weiqi Zhou 
1,

*, Mary. L. Cadenasso 
2
, Kirsten Schwarz 

3
 and Steward T.A. Pickett 

4
  

1
 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental 

Sciences, Chinese Academy of Sciences, Shuangqinglu 18, Beijing 100085, China 
2 

Department of Plant Sciences, University of California, Davis, Mail Stop 1, 1210 PES, One Shields 

Ave, Davis, CA 95616, USA; E-Mail: mlcadenasso@ucdavis.edu 
3 

Northern Kentucky University, Nunn Drive, Highland Heights, KY 41099, USA;  

E-Mail: schwarzk1@nku.edu
 

4 
Cary Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545, USA;  

E-Mail: picketts@caryinstitute.org 

* Author to whom correspondence should be addressed; E-Mail: wzhou@rcees.ac.cn;  

Tel.: +86-10-6284-9268; Fax: +86-10-6291-5372. 

Received: 10 January 2014; in revised form: 21 March 2014 / Accepted: 26 March 2014 /  

Published: 16 April 2014 

 

Abstract: Describing and quantifying the spatial heterogeneity of land cover in urban 

systems is crucial for developing an ecological understanding of cities. This paper presents 

a new approach to quantifying the fine-scale heterogeneity in urban landscapes that 

capitalizes on the strengths of two commonly used approaches—visual interpretation and 

object-based image analysis. This new approach integrates the ability of humans to detect 

pattern with an object-based image analysis that accurately and efficiently quantifies the 

components that give rise to that pattern. Patches that contain a mix of built and natural 

land cover features were first delineated through visual interpretation. These patches served 

as pre-defined boundaries for finer-scale segmentation and classification of within-patch land 

cover features which were classified using object-based image analysis. Patches were then 

classified based on the within-patch proportion cover of features. We applied this approach 

to the Gwynns Falls watershed in Baltimore, Maryland, USA. The object-based 

classification approach proved to be effective for classifying within-patch land cover 

features. The overall accuracy of the classification maps of 1999 and 2004 were 92.3% and 

93.7%, respectively. This exercise demonstrates that by integrating visual interpretation 
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with object-based classification, the fine-scale spatial heterogeneity in urban landscapes 

and land cover change can be described and quantified in a more efficient and ecologically 

meaningful way than either purely automated or visual methods alone. This new approach 

provides a tool that allows us to quantify the structure of the urban landscape including 

both built and non-built components that will better accommodate ecological research 

linking system structure to ecological processes. 

Keywords: object-based image analysis; visual interpretation; spatial heterogeneity;  

land cover classification; urban landscape; Baltimore 

 

1. Introduction 

Urban areas are strikingly heterogeneous, representing a mix of natural and built components at 

different densities and arrangements in the landscape. Over the past decade, research in urban systems 

has increasingly focused on understanding the link between this spatial heterogeneity and ecological 

processes [1–3]. This understanding is crucial for the management of current urban systems as well as 

for the planning of future growth. It also, potentially, may help us understand the influence of policy 

interventions on urban system structure and function. To develop such an understanding, it is 

necessary to first quantify the fine-scale heterogeneity using structural elements of the landscape that 

are hypothesized to influence ecological processes [4]. Urban ecologists are increasingly interested in 

the reciprocal interactions between built and non-built components of the landscape [1,4]. Therefore, 

there is a need for new approaches to quantify the fine-scale heterogeneity in urban landscapes that 

integrate the built and non-built components of the system [4,5]. Here we present a new approach to 

quantifying the fine-scale heterogeneity in urban landscapes that capitalizes on the strengths of two 

commonly used approaches—visual interpretation and object-based image analysis, using high spatial 

resolution imagery. This new approach integrates the ability of humans to detect pattern with an object 

based image analysis that accurately and efficiently quantifies the components that give rise to that pattern.  

Visual interpretation is better suited for delimiting patches that incorporate built and non-built 

components of the landscape, compared to digital image processing approaches [4,6–8]. Recently, 

there is increasing interest in delineating patches (sometimes referred to as land cover units), based on 

visual interpretation that incorporate both built and non-built components of the urban landscapes [4,9–11], 

instead of digitizing individual landscape features [12]. Humans are exceptionally adept at visually 

recognizing and interpreting complex spatial patterns through comprehensively using shape, size, 

color, orientation, pattern, texture and context in interpretations [13,14]. These characteristics are 

crucial for identifying and delimiting patches that can represent important contrasts in ecological 

structure or process in the landscape, but are difficult to incorporate into conventional digital image 

processing techniques [6,7]. Therefore, in contrast to computer-based digital image processing 

approaches, visual interpretation integrates ecological knowledge into image analysis to define the 

boundaries of patches making the results more ecologically meaningful and relevant [4,7,8,14].  

While visual interpretation is a good approach for patch delineation, it is not ideally suited for 

quantifying area estimates of within-patch land cover features [6,15,16]. In addition, it is labor-intensive, 
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and may be subjective and unrepeatable, translating into mapping accuracy that varies substantially 

among interpreters with different experiences and skills [6,17,18].  

Object-based image analysis can provide an effective means to measure land cover heterogeneity 

within a patch delineated from visual interpretation [19–21]. Rather than classifying individual pixels 

into discrete cover types, object-based classification first segments the imagery into groups of pixels, 

called ―image objects‖. Consequently, image object characteristics such as shape and spatial relations 

(e.g., adjacency, distances, and direction) can be used to increase the discrimination between spectrally 

similar urban land cover types (e.g., building roofs and paved surfaces), thus improving the 

classification [19,20]. An object-based approach to land cover classification is quickly gaining 

acceptance among remote sensors and has recently been widely applied to urban land cover 

classifications [22].  

This study presents a new approach that combines visual interpretation and object-based 

classification, with high-resolution digital aerial imagery, to describe and quantify the fine-scale 

heterogeneity in urban landscapes. This approach integrates the strength of human interpretation in 

patch delineation and the efficiency of an object-based approach in automated quantification of  

finer-scale land cover features. The overall objective of this study is to develop an ecologically 

meaningful and efficient approach to quantifying the fine-scale heterogeneity in urban landscapes.  

The method involves two steps. First, patches are generated through visual interpretation based on the 

HERCULES (High Ecological Resolution Classification for Urban Landscapes and Environmental 

Systems) land cover classification scheme [4], which will be discussed in detail in the method section. 

These patches serve as pre-defined boundaries for finer-scale segmentation and classification of 

within-patch land cover features, using an object-based classification. Patches are then classified based 

on the within-patch proportion of land cover features. We applied this approach to the Gwynns Falls 

watershed in Baltimore, Maryland, USA for two years, 1999 and 2004 to quantify the fine-scale 

heterogeneity and understand change over time. 

2. Methods 

2.1. Study Site  

This analysis was conducted for the Gwynns Falls watershed, one of the focal research watersheds 

of the Baltimore Ecosystem Study (BES), a long-term ecological research project (LTER) 

(www.beslter.org). The Gwynns Falls watershed, approximately 17,150 hectares in size, spans 

Baltimore City and Baltimore County, Maryland, USA and drains into the Chesapeake Bay (Figure 1). 

It traverses an urban–suburban–rural gradient from the urban core of Baltimore City, through older 

inner ring suburbs to rapidly suburbanizing areas in the middle reaches and a rural/suburban fringe in 

the upper section. Land cover in the watershed varies from highly impervious in lower sections to a 

broad mix of uses in the middle and upper sections. 
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Figure 1. The Gwynns Falls watershed includes portions of Baltimore City and Baltimore 

County, MD, USA, and drains into the Chesapeake Bay. 

 

2.2. Data 

Data used in this study included: (1) high spatial resolution color-infrared digital aerial image data 

for two years (October 1999 and August 2004); (2) Light Detecting and Ranging (LIDAR) data 

acquired in March 2002; and (3) building footprints (ca. 1997). The aerial imagery was used for both 

patch delineation and within-patch land cover classification, while LIDAR data and building footprints 

were only used to aid in the land cover classification.  

The imagery was 3-band color-infrared, with green (510–600 nm), red (600–700 nm), and  

near-infrared (NIR) bands (800–900 nm). The imagery has a spatial resolution of 0.6 m, with an 8-bit 

radiometric depth. It was orthorectified using a bilinear interpolation resampling method, and it meets the 

National Mapping Accuracy Standards for scale mapping of 1:3000 (3-m accuracy with 90% confidence). 

A surface height model was derived from the LIDAR data, and used to aid in the land cover 

classification. Both the first and last vertical returns were recorded for each laser pulse, with an 

average point spacing of approximately 1.3 m. The returns from bare ground and nonground  

(e.g., canopy, building roofs) were separated. The point-sample elevation data were interpolated into  

1-m spatial resolution raster Digital Surface Models (DSMs) using the Natural Neighbor interpolation 

method available in ArcGIS 3D Analyst 
TM

. Digital surface models were separately created to 

represent the bare ground and nonground features from the return measurements. A surface cover 

height model was then generated by subtracting the bare ground DSM from the surface cover DSM. 
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Building footprints of Baltimore County and City of Baltimore (ca. 1997) were also used in this 

study. A limited assessment was conducted to compare the building footprints to the aerial image data. 

The building footprints appeared to agree spatially with the aerial imagery, but a considerable number 

of buildings that were constructed after 1997 were not captured. 

2.3. Patch Delineation  

The HERCULES land cover classification scheme was used to delineate patches. HERCULES 

classifies the biophysical structure of urban environments using six landscape features:  

(1) coarse-textured vegetation—trees and shrubs (CV); (2) fine-textured vegetation—herbs and grasses 

(FV); (3) bare soil; (4) pavement, (5) building; and (6) building typology [4]). Building typology has 

five recognized types (Table 1). Water is represented by the absence of the other elements.  

Table 1. The five types of different buildings. 

Building Types Description and Definition of Building Types 

Single (S) single structures in rows or clusters 

Connected (C) 
connected structures that share a wall or are associated with multiple 

walkways while sharing the same roofline 

Mixed (M) 
buildings with multiple wings, connection by courtyards or arcades, or a 

group of buildings with different structural footprints 

Highrises (H) buildings that are between 4 and 10 stories 

Towers (T) buildings greater than 10 stories 

HERCULES patches were digitized on-screen using the imagery in ArcGIS 
TM

 9.2. Patches were 

delineated separately on the two datasets (1999/2004). Patches must be a minimum size of 20 m in two 

orthogonal directions to be recognized. This size constraint prevents: (1) roads, except for interstate 

highways and large divided roadways, from becoming independent patches; smaller roads and streets 

are included in the patches, and the variation among patches in the density of roads is captured by 

quantifying cover of paved surfaces; (2) individual parcels from being recognized as unique patches, as 

the land cover may reflect single land-owner management decisions; and (3) a single row of trees 

being recognized as unique patches.  

The delineation of patches was an iterative process. Patches were mapped by two cycles of  

scale-explicit, rule-based interpretation of imagery, followed by QA/QC (quality assurance/quality 

control). Patches with no buildings were mapped first. These included patches of: (1) closed canopy 

woody vegetation; (2) open canopy; (3) major roads; and (4) water bodies. A patch of closed canopy 

woody vegetation is composed of continuous woody canopy with no built structures and an area larger 

than 0.5 ha. If there is an opening of greater than 20 m by 20 m, this opening will be mapped as a 

separated patch or patches. Patches of open canopy are those with no continuous canopy and no built 

structures; however, there may be isolated or scattered woody vegetation present. A road patch was 

mapped only if the width of the roads was greater than 20 m; examples are highways and major roads 

with multiple lanes. For those roads that were not wide enough to be delimited as an individual patch, 

if a road separates two patches, then the road is divided equally between the two patches; i.e., the patch 
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boundary is drawn down the center of the road. Only water bodies with water year round were 

recognized as unique patches. This excluded ephemeral water bodies such as detention ponds.  

Patches with built structures were then mapped based on the types of buildings recognized in the 

HERCULES classification (Table 1). A patch was delimited to include only one type of building, and 

any spatially associated vegetation and paved surfaces. Spatially adjacent buildings with the same 

building type were mapped into one patch if the relative abundances of the spatially associated 

vegetation and paved surfaces were similar. Otherwise, separated patches would be delineated.  

Following the delineation of the draft patches, a different interpreter revisited each patch.  

This process involves a closer inspection of patch content to determine the presence and relative 

amounts of the features that make up the patch. This closer inspection may have resulted in 

discovering that the draft patch needed to be split into two or more patches. More often, assessing the 

relative amounts of the features that make up the patch may have led to the realization that the draft 

patch contained the same elements in the same proportions as an adjacent patch, resulting in a merge 

of the adjacent patches. Often the similarity between patches was overlooked in the initial stage 

because the arrangement of the elements in the two patches was very different, making visual 

interpretation of cover challenging. In general, the tendency to merge rather than to split patches was 

consistent across the years sampled; however, this was not quantified. 

2.4. Patch Classification 

Following patch delineation, an object-based approach was used to classify those patches according 

to the HERCULES criteria—the six landscape elements identified above. We developed a two-level 

hierarchical classification system. Image objects were generated at two hierarchical scales: (1) patches 

(level 2, or higher level); and (2) land cover features within patches (level 1, or lower level).  

The delineated patches served as pre-defined boundaries for finer-scale segmentation and classification 

of within-patch land cover features. Classification of the five land cover features were performed first 

(Figure 2, Panel C). Patches were then classified based on the within-patch, proportional cover of the 

five land cover features, combining building typology (Figure 2, Panel E; Table 2). We implemented 

this framework in Definiens Developer (now eCognition 8), an object-based image analysis program [23]. 

Separate classifications were created for the two study years.  

2.4.1. Classification of Land Cover Features 

We first segmented the image into object primitives, which consisted of groups of relatively 

homogeneous pixels. These objects were the building blocks for subsequent classifications following 

the methodology discussed in more detail in a previous study [20]. The image segmentation algorithm 

used in this study followed the fractal net evolution approach [23,24]. It is a bottom-up region merging 

algorithm, which is initialized with each pixel in the image as a separate segment. In subsequent steps, 

spatially adjacent segments are merged into a larger one if the increase in heterogeneity of the new 

segment compared to its component segments is less than a user-defined scale parameter [24].  

The scale parameter indirectly controls the size of objects by specifying the maximum heterogeneity 

that is allowed within each object: The greater the scale parameter, the larger the average size of the 

objects. User-defined color and shape parameters can also be set to change the relative weighting of 
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reflectance and shape in defining segments. The process stops when there are no more possible merges 

given the defined scale parameter. The segmentation was conducted at a very fine scale, with a scale 

parameter of 20. The color criterion was given a weight of 0.9, while the shape was assigned with the 

remaining weight of 0.1, giving equal weights to compactness (i.e., 0.05) and smoothness. The scale 

parameter of 20 and the values for the color and shape parameters were determined by visual 

interpretation of the image segmentation results, where objects were considered to be internally 

homogenous, i.e., all pixels within an image object belonged to one land cover class [20,25]. 

Figure 2. The process of patch delineation and classification. Panel (A): the false-color 

aerial imagery of an urban landscape with mixed built and non-built components;  

Panel (B): the patches delineated based on the HERCULES classification scheme;  

Panel (C): classification of the six types of landscape features (or land cover) based on an  

object-based classification approach; Panel (D): land cover classification with the patches 

overlaid; Panel (E): patch classification based on the proportional cover of within-patch 

landscape features.  

  

(A) (B) 

  

(C) (D) 

  

 (E) 

Building 

Coarse Vegetation(Tree &Shrub) 

Fine Vegetation (Grass &Herbs) 

Pavement 

Water 

Bare Soil 
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Following the image segmentation, a rule-based classification, i.e., a set of membership functions, 

was used to classify each of the objects into one of the five land cover features defined in HERCULES. 

A class hierarchy and its associated knowledge base of classification rules were developed by adapting 

the knowledge base created by a previous study [20]. Here, we describe the class hierarchy,  

its associated features and rules, and the classification processes (Figure 3). 

We first separated buildings from non-built areas by using the information from the thematic layer 

of building footprints. Then, the non-built areas were classified into areas with shadows and areas 

without shadows using brightness, with the threshold value of 30 determined by a histogram 

thresholding method [20,25]. The brightness was defined as the channel mean value of the three image 

layers, i.e., green, red and near-infrared bands. The areas without shadows were further subdivided into 

vegetated areas and non-vegetated areas using Normalized Difference Vegetation Index (NDVI), 

which was derived from the red and near-infrared bands: Objects with NDVI values greater than 0.08 

were classified as vegetation. Vegetation was further divided into coarse vegetation and fine 

vegetation, based on the height information obtained from the surface height model generated from 

LIDAR. Non-vegetated areas with height values of greater than 3 m were classified as buildings. 

We added the class of ―missing building‖ to compensate for the fact that buildings built after 1997 

were missing from the building footprint dataset. The parcel boundary layer contained information 

regarding the year of housing construction which was used to separate pavement from bare soil,  

as bare soil was mostly associated with new construction. Manual editing was further conducted to 

improve the separation of bare soil from pavement. 

Before we further classified shaded objects, we performed an additional segmentation at a finer 

scale on the shaded objects, using the value of 5 for the scale parameter [25]. Shaded objects were then 

classified into tall and short objects, using information from the surface height model. Short objects 

were further distinguished into shaded fine vegetation and shaded pavement using both NDVI and 

spatial relations to neighboring objects. Shaded fine vegetation included objects with an NDVI value 

greater than 0.l or whose relative ―borders to fine vegetation‖ value was greater than 0.5. The value of 

―borders to fine vegetation‖ was defined as the ratio of an object’s border shared with neighboring fine 

vegetation objects to the total border length. Shaded tall objects were classified as shaded buildings if 

their NDVI values were less than 0.1 and their relative borders to buildings were greater than 0.2; 

otherwise they were classified as shaded trees. 

2.4.2. Accuracy Assessment on Classification of Land Cover Features 

Accuracy of the land cover classification was assessed separately for the two years. We used pixels 

as the assessment units [26]. For each classification map, a stratified random sampling scheme based 

on the mapped land cover classes as strata was used to generate random points [27]. A total of  

350 points were sampled, with a minimum of 50 random points representing each of the five land 

cover features [17,27]. The 1999 and 2004 imagery were used as reference data. In addition, natural 

color orthophotos with spatial resolution of 0.3 m that were collected in 2005 were used, in cases a 

decision could not be made only based on the 1999 or 2004 imagery (e.g., the randomly selected 

checking point was under shadow). An error matrix was created for each classification map.  

We calculated the overall, and user’s and producer’s accuracies based on the error matrices (Table 3). 
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We incorporated the inclusion probabilities for the stratified design when calculating the user’s and  

producer’s accuracies [26]. 

Figure 3. The class hierarchy, and its associated features and rules used for land cover 

classification (adapted from [4]). This classification hierarchy was used for the 

classifications of both image data collected in 1999 and 2004. Here the gray ovals refer to 

the features used for classification. Except for brightness, the values of the threshold for the 

features used for classification were identical for image data collected in 1999 and 2004. 

The brightness used to separate shaded objects from non-shaded ones was 70 for the 2004 

image data. 

 

2.4.3. Patch Classification 

Patches, the objects at the higher level, were classified based on the within patch proportion cover 

of the five land cover features, combining building typology. The within-patch proportion cover of the 

five land cover features was obtained using the information from the sub-objects in the lower level. 

The proportional cover is divided into five categories: (0) absent, (1) present to 10% cover,  
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(2) 11%–35% cover, (3) 36%–75% cover, and (4) >75% cover [4]. Building typology was visually 

interpreted during the process of patch delineation. Patch classes are defined by combining the 

proportion cover of all the five land cover features and building typology within each patch  

(CV + FV + Bare Soil + Pave + Building + Building type). For example, a patch with a high 

proportion of coarse vegetation (>75%), medium density of single detached houses (11%–35%),  

little fine vegetation and pavement (present to 10%), and no bare soil, is classified as ―41012S‖.  

For an example of patches classified using HERCULES see Table 2. 

Table 2. Examples of patches classified using HERCULES (adapted from [4]).  

The proportional cover of coarse and fine vegetation, bare soil, pavement, and buildings is 

scored into five categories (0 = none; 1 = present–10%; 2 = 11%–35%;  

3 = 36%–75%; and 4 = >75%). Building types are identified as N = none, S = single,  

C = connected, or M = mixed. 

 
Coarse 

Vegetation 

Fine 

Vegetation 

Bare 

Soil 
Pavement Building 

Building 

Type 

 

4 0 0 1 1 S 

 

4 0 0 0 0 N 

 

1 2 0 2 2 C 

 

0 1 4 0 0 N 

 

1 2 0 3 2 M 

 

2 4 0 0 0 N 

Table 3. Summary of the classification accuracies of land cover features for 1999 and 

2004, using an object-based classification approach. 

Land Cover Class 
1999 2004 

User’s Acc. (%) Producer’s Acc. (%) User’s Acc. (%) Producer’s Acc. (%) 

Building 83.6 93.4 93.4 91.2 

CV 97.7 95.9 97.7 93.8 

FV 94.9 92.7 91.4 95.4 

Pavement 91.9 91.6 91.8 94.9 

Bare soil 90.0 100 95.9 66.5 

Overall accuracy 92.3% 93.7% 
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3. Results  

3.1. Classification of Land Cover Features 

The overall accuracies and the user’s and producer’s accuracies of individual land cover features 

were consistently high for both classification maps (1999 and 2004) (Table 3). The overall accuracies 

for 1999 and 2004 were 92.3% and 93.7%, respectively. User’s and producer’s accuracies of 

individual land cover features in both years were generally high, mostly greater than 90%.  

The relatively low producer’s accuracy for bare soil in 2004 was largely due to the very small 

proportion (i.e., 0.7%) of this type of land cover in the study area (Table 4).  

Figure 4 depicts the land cover classification for the watershed in 1999 and 2004. The proportion 

cover of buildings, CV, FV, pavement and bare soil was 11.6%, 34.3%, 28.2%, 24.0%, and 1.9%, 

respectively in 1999, and was 12.0%, 34.5%, 26.9%, 25.9%, and 0.7%, respectively in 2004 (Table 4). 

The area, or proportions of, bare soil and fine vegetation decreased from 1999 to 2004, while that of 

building, pavement, and coarse vegetation increased. The percent cover of fine vegetation and bare soil 

decreased 1.3% and 1.2%, respectively (Table 4). Percent cover of pavement increased 1.9% between 

the two years. The coverage of coarse vegetation and building increased slightly, with values of 0.2% 

and 0.4%. While the changes in the relative abundance (or proportion) of the land cover features were 

small, changes in areas were not. For example, there was an increase of 319.8 ha of paved surfaces in 

the watershed during the 5-year time period, and a decrease of 223 ha in fine vegetation (Table 4) 

Figure 4. Land cover classification for the Gwynns Falls watershed in 1999 (left panel) 

and 2004 (right panel).  
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Table 4. Area and percent cover of the five land cover features in the Gwynns Falls 

watershed in 1999 and 2004, and their changes between the two years. 

Land Cover 

1999 2004 Relative Change 

Area (ha) 
Percent 

Cover (%) 

Area 

(ha) 

Percent 

Cover (%) 

Area 

(ha) 

Percent 

Cover (%) 

Building 1989.5 11.6 2055.6 12.0 66.1 0.4 

CV 5876.9 34.3 5915.8 34.5 38.9 0.2 

FV 4839.0 28.2 4616.0 26.9 −223.0 −1.3 

Pavement 4122.8 24.0 4442.6 25.9 319.8 1.9 

Bare soil 321.0 1.9 119.2 0.7 −201.8 −1.2 

3.2. Patch Delineation and Patch Classification 

Patch delineation: The total number of patches in the watershed was 2159 in 1999, with a patch 

density of about 12.3/km
2
. Patch size ranged from 0.07 to 785.57 ha, with the mean patch size of 

7.94 ha and the standard deviation of 25.54 ha. The median patch size was 2.64 ha, only about a third 

of the mean patch size, indicating the highly right-skewed distribution of patch sizes. That is, the 

majority of the distribution is concentrated on the left, with relatively few high values. Patches within 

Baltimore City had smaller mean patch size, but larger variation than those outside of the City. The 

total length of patch edges was 2892.15 km, with the mean of 1.34 km and a standard deviation of 

2.36 km. The mean of shape index was 1.34, with a standard deviation of 0.55. Shape index is a 

measure of patch shape complexity [28]. Shape index equals 1 when the patch is maximally 

compact—square or almost square. It increases as patch shape becomes more irregular. 

The total number of patches decreased slightly from 2159 to 2136 in 2004, with a very similar patch 

density, mean patch size, and range of patch size to those of 1999. The total length of patch edges was 

2882.27 km, with a very small decrease from that of 1999. The mean shape index was 1.34 in 2004. 

Patch classification: The Gwynns Falls watershed consists of 400 types of patches in 1999  

(Figure 5). The number of patch types, however, was greatly reduced in 2004 to 330 (Figure 6). 

Patches were very unevenly distributed among classes for both years. In 1999, the 20 most dominant 

classes accounted for 43.8% of all the patches, or an average of 47 patches for one class, while 315 out 

of the 400 classes (or 78.8%), had less than five patches for each class. In 2004, the 20 most dominant 

classes had 1043 patches (or 48.8%), but 254 patch classes (or 77.0%), had less than five patches for 

each class. For both years, most of the watershed was occupied by built patches, or patches 

with buildings present. Buildings were present in 1430 patches, or 67% of the patches in 1999, 

and 1443 patches, or 66.2% of the patches in 2004. Only 109 patches in 1999 and 123 patches in 2004 

had no buildings or pavement present. In 1999, the five largest patch classes were 22032C, 22022C, 

22032M, 12032M, and 23020N, with number of patches 79, 76, 71, 63, and 59, respectively. In 2004, 

they were 22022C, 22032M, 12032M, 23022S, and 23020N, with number of patches 98, 90, 84, 58, 

and 56, respectively. 
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Figure 5. HERCULES patch classification for the Gwynns Falls watershed in 1999.  

The legend lists the first 20 dominant classes, which accounted for 43.8% of all the patches. 

 

Figure 6. HERCULES patch classification for the Gwynns Falls watershed in 2004.  

The legend lists the first 20 dominant classes, which accounted for 48.8% of all the patches. 

 

4. Discussion 

Urban areas are strikingly heterogeneous. To develop an ecological understanding of urban systems, 

it is critical to quantify the fine-scale heterogeneity of their built and natural components. Recent 

availability of high-spatial resolution satellite and aerial imagery provides new opportunities to 
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describe and quantify this fine-scale heterogeneity. However, it also calls for new approaches geared 

towards such data. In this study, we present an approach that combines visual interpretation and  

object-based image analysis to describe and quantify the fine-scale heterogeneity in urban landscapes. 

By integrating the strength of visual interpretation in patch delineation with an object-based approach 

in patch classification, this new approach provides an effective way to quantify the structure of urban 

landscapes that will better accommodate ecological research linking system structure to ecological 

processes. Our results showed that the urban landscape is very heterogeneous, characterized by 

extreme fine-scale patchiness and large variability in patch size. 

4.1. Patch Delineation and Patch Classification: Visual Interpretation versus Digital  

Image Processing 

Patch Delineation. Visual interpretation is superior to digital processing methods in delineating 

patches, even with the great recent advances made in object-based image analysis techniques [8,21,22]. 

In fact, objects generated from image segmentation are mostly image objects without realistic 

ecological meaning [19,22]. Humans are exceptionally adept at visually recognizing and interpreting 

complex spatial patterns [13,14]. In particular, ecological knowledge can be integrated into image 

analysis through visual interpretation with ease, but ecological knowledge is difficult to incorporate 

into digital image processing techniques (Jensen 2000 [14]; Richards and Jia 2006 [6]; Lang 2009 [8]). 

Incorporating ecological knowledge into patch delineation is critical in measuring and quantifying the 

fine-scale heterogeneity in urban landscapes. Therefore, incorporating ecological knowledge makes 

visual interpretation valuable for patch delineation, even though it is labor-intensive, and thus expensive.  

Recent advances in object-based image analysis greatly enhance our capacity in urban land cover 

classification and feature extraction [19,21]. With the development of object-based image analysis, 

there is increasing interest in the automatic delineation of ecologically realistic objects [8,22,29].  

The integration of future advances in image segmentation with knowledge-based classifications may 

allow us to incorporate ecological knowledge with ease, allowing for the automatic delineation of 

ecologically meaningful objects, or patches [8,22]. 

Patch Classification. Recent advances in object-based image analysis allow an automated 

quantification of land cover features at fine spatial scales [19–21]. Our results show that an  

object-based approach provides an effective way for the classification of land cover features within a 

patch, and thus for patch classification. Therefore, an integration of the strength of visual interpretation 

for ecological patch delineation, and the effectiveness of an object-based approach for patch 

classification, provides a better way than using visual interpretation or an object-based approach alone,  

in quantification of fine-scale heterogeneous urban landscapes [8,30]. 

Alternatively, the within-patch proportion of land cover features can be visually estimated [4],  

in case there are no resources to perform object-based classification. Visual interpretation, however,  

is relatively poor in quantification of the finer scale of within-patch land cover features, compared to 

digital processing methods such as object-based image analysis [6,15]). A comparison between the 

estimates from visual interpretation and those from object-based classification showed that estimates 

by visual interpretation are moderately accurate, with overall accuracies varying by land cover  

features [15]. While visual interpretation does not work effectively when patches contain a mix of 
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different types of features, accuracy increases with patches that are either dominated by a specific 

feature, or do not contain a specific feature [15].  

An object-based approach, however, not only provides more accurate patch classification, but also 

provides more flexibility in patch classification. Different classification schemes, unlike the one used 

for patch classification in this study, can be developed based on different research questions.  

For example, if research needs require more or less categorical resolution in land cover features, the 

classes can be easily obtained by recoding the continuous percent cover of the land cover feature(s) within 

a patch.  

4.2. Advancing Our Understanding of Ecological Processes in Cities 

In addition to describing and quantifying the fine-scale heterogeneity in urban systems, this 

integrative approach also provides a tool for: (1) Communicating with and collaborating with other 

disciplines such as social science and urban design to implement integrated socio-ecological research; 

(2) stratifying the landscape to assist with sampling schemes design and site selection; (3) testing 

hypotheses for structure-function links; and (4) exploring hierarchical patch dynamics. Integrated  

socio-ecological research requires a match between the spatial and categorical resolution of ecological 

and social datasets [31]. For example, household level social data would be of little use to ecologists 

who may only be able to say something about urban land cover at the scale of the watershed and vice 

versa. In addition, the integration of built and non-built areas into ecologically relevant patches may 

also correspond to patches of social significance. For example, neighborhoods that were built at the 

same time will likely have similar amounts of fine vegetation, coarse vegetation, and building cover 

especially if they were built by the same developer. Neighborhoods with similar structure would be 

captured as a single HERCULES patch. This patch may also represent social organization in the 

community, for example, a neighborhood association, which could affect the relative proportion of 

cover by implementing management decisions. Classifications that do not integrate built and non-built 

components would not be able to capture this reciprocal relationship.  

The flexibility of the classification also makes it well suited for stratifying the landscape to assist 

with sampling schemes design and site selection. The hierarchical nature of the classification allows 

patches with similar land cover proportions to be selected. For example, if a research question 

addressed forest patches embedded in the city, an investigator could select patches in the classification 

with continuous woody vegetation. Alternatively, a researcher might be interested in testing the affect 

of lawn age on carbon cycling. The flexibility of the classification would allow the investigator to 

select lawns of a different age while keeping all other factors constant (e.g., herbaceous vegetation, 

woody vegetation, and building cover). It also allows for the testing of gradients of land cover, for 

example, a researcher could select patches with three different densities of building cover while 

holding woody vegetation constant.  

By separating ecological structure from function, this integrative approach also provides a tool for 

testing hypotheses of structure-function links in cities [32,33], a research area ripe for expansion and 

relevant as the Earth becomes increasingly urban. Finally, the hierarchical nature of the classification 

permits the exploration of patch dynamics as well as within-patch variation when temporal data are 

available. For example, by quantifying how much change of within-patch land cover feature will lead 
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to changes in HERCULES patches, we can examine how changes in HERCULES patches link to those 

in within-patch land cover features. 

5. Summary and Conclusions 

Urban areas are inherently heterogeneous. To develop an ecological understanding of urban 

systems, it is critical to quantify the fine-scale heterogeneity of their built and natural components. 

This paper presents a new approach to quantify and measure the fine-scale heterogeneity in urban 

systems using high-spatial resolution imagery. This approach combines visual interpretation for patch 

delineation, or delimiting ecologically meaningful objects, with an object-based image analysis 

approach to quantify the land cover features within patches for patch classification. It integrates the 

strength of human interpretation in patch delineation and the effectiveness of an object-based approach 

in automated quantification of finer-scale land cover features. This approach provides a more efficient 

and ecologically meaningful way than either purely automated or visual methods alone to measure and 

quantify the structure of urban systems, using high-spatial resolution remotely sensed imagery.  

In addition, it also provides a useful tool for site selection, testing hypotheses linking structure of urban 

systems and ecosystem function, and integrated socio-ecological research. 
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