Next Issue
Volume 7, February
Previous Issue
Volume 6, December
 
 

Pharmaceuticals, Volume 7, Issue 1 (January 2014) – 6 articles , Pages 1-112

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
2299 KiB  
Article
Asymmetric Synthesis of Spirocyclic 2-Benzopyrans for Positron Emission Tomography of σ1 Receptors in the Brain
by Katharina Holl, Dirk Schepmann, Steffen Fischer, Friedrich-Alexander Ludwig, Achim Hiller, Cornelius K. Donat, Winnie Deuther-Conrad, Peter Brust and Bernhard Wünsch
Pharmaceuticals 2014, 7(1), 78-112; https://doi.org/10.3390/ph7010078 - 22 Jan 2014
Cited by 48 | Viewed by 7914
Abstract
Sharpless asymmetric dihydroxylation of styrene derivative 6 afforded chiral triols (R)-7 and (S)-7, which were cyclized with tosyl chloride in the presence of Bu2SnO to provide 2-benzopyrans (R)-4 and (S)-4 with high [...] Read more.
Sharpless asymmetric dihydroxylation of styrene derivative 6 afforded chiral triols (R)-7 and (S)-7, which were cyclized with tosyl chloride in the presence of Bu2SnO to provide 2-benzopyrans (R)-4 and (S)-4 with high regioselectivity. The additional hydroxy moiety in the 4-position was exploited for the introduction of various substituents. Williamson ether synthesis and replacement of the Boc protective group with a benzyl moiety led to potent σ1 ligands with high σ12-selectivity. With exception of the ethoxy derivative 16, the (R)-configured enantiomers represent eutomers with eudismic ratios of up to 29 for the ester (R)-18. The methyl ether (R)-15 represents the most potent σ1 ligand of this series of compounds, with a Ki value of 1.2 nM and an eudismic ratio of 7. Tosylate (R)-21 was used as precursor for the radiosynthesis of [18F]-(R)-20, which was available by nucleophilic substitution with K[18F]F K222 carbonate complex. The radiochemical yield of [18F]-(R)-20 was 18%–20%, the radiochemical purity greater than 97% and the specific radioactivity 175–300 GBq/µmol. Although radiometabolites were detected in plasma, urine and liver samples, radiometabolites were not found in brain samples. After 30 min, the uptake of the radiotracer in the brain was 3.4% of injected dose per gram of tissue and could be reduced by coadministration of the σ1 antagonist haloperidol. [18F]-(R)-20 was able to label those regions of the brain, which were reported to have high density of σ1 receptors. Full article
(This article belongs to the Special Issue Radiopharmaceutical Chemistry between Imaging and Radioendotherapy)
Show Figures

Figure 1

238 KiB  
Review
Host-Defense Peptides with Therapeutic Potential from Skin Secretions of Frogs from the Family Pipidae
by J. Michael Conlon and Milena Mechkarska
Pharmaceuticals 2014, 7(1), 58-77; https://doi.org/10.3390/ph7010058 - 15 Jan 2014
Cited by 77 | Viewed by 12774
Abstract
Skin secretions from frogs belonging to the genera Xenopus, Silurana, Hymenochirus, and Pseudhymenochirus in the family Pipidae are a rich source of host-defense peptides with varying degrees of antimicrobial activities and cytotoxicities to mammalian cells. Magainin, peptide glycine-leucine-amide (PGLa), caerulein-precursor [...] Read more.
Skin secretions from frogs belonging to the genera Xenopus, Silurana, Hymenochirus, and Pseudhymenochirus in the family Pipidae are a rich source of host-defense peptides with varying degrees of antimicrobial activities and cytotoxicities to mammalian cells. Magainin, peptide glycine-leucine-amide (PGLa), caerulein-precursor fragment (CPF), and xenopsin-precursor fragment (XPF) peptides have been isolated from norepinephrine-stimulated skin secretions from several species of Xenopus and Silurana. Hymenochirins and pseudhymenochirins have been isolated from Hymenochirus boettgeri and Pseudhymenochirus merlini. A major obstacle to the development of these peptides as anti-infective agents is their hemolytic activities against human erythrocytes. Analogs of the magainins, CPF peptides and hymenochirin-1B with increased antimicrobial potencies and low cytotoxicities have been developed that are active (MIC < 5 μM) against multidrug-resistant clinical isolates of Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, Stenotrophomonas maltophilia and Klebsiella pneumoniae. Despite this, the therapeutic potential of frog skin peptides as anti-infective agents has not been realized so that alternative clinical applications as anti-cancer, anti-viral, anti-diabetic, or immunomodulatory drugs are being explored. Full article
Show Figures

Figure 1

845 KiB  
Article
Ritonavir-Mediated Induction of Apoptosis in Pancreatic Cancer Occurs via the RB/E2F-1 and AKT Pathways
by Ramesh B. Batchu, Oksana V. Gruzdyn, Christopher S. Bryant, Aamer M. Qazi, Sanjeev Kumar, Sreedhar Chamala, Shu T. Kung, Ramana S. Sanka, Udaya S. Puttagunta, Donald W. Weaver and Scott A. Gruber
Pharmaceuticals 2014, 7(1), 46-57; https://doi.org/10.3390/ph7010046 - 09 Jan 2014
Cited by 38 | Viewed by 7392
Abstract
Recent observations suggest a lower incidence of malignancies in patients infected with HIV during treatment with Highly Active Anti-Retroviral Therapy (HAART) utilizing protease inhibitors. We investigated the effects of ritonavir, a FDA approved HIV protease inhibitor, on proliferation of pancreatic ductal adeno-carcinoma (PDAC) [...] Read more.
Recent observations suggest a lower incidence of malignancies in patients infected with HIV during treatment with Highly Active Anti-Retroviral Therapy (HAART) utilizing protease inhibitors. We investigated the effects of ritonavir, a FDA approved HIV protease inhibitor, on proliferation of pancreatic ductal adeno-carcinoma (PDAC) cell lines. Human PDAC cell lines BxPC-3, MIA PaCa-2, and PANC-1 were propagated under standard conditions and treated with serial dilutions of ritonavir. Ritonavir inhibited cell growth in a dose-dependent manner as well as activated the intrinsic apoptotic pathway in human pancreatic ductal adenocarcinoma (PDAC) cell lines. We observed down-modulation of cell-cycle promoting and up-regulation of cell-cycle inhibitory genes; enhanced interaction of retinoblastoma protein (RB) with E2F-1 transcription factor; inhibition of phosphorylation of RB, resulting in sequestration of E2F-1 and subsequent down-regulation of S phase genes; decreased interaction of E2F-1 with its consensus binding sites; inhibition of cell motility and invasiveness; and inhibition of the AKT pathway. Our results demonstrate a potential use of ritonavir as part of combination chemotherapy for PDAC. Since ritonavir is FDA approved for HIV, drug repositioning for PDAC would limit the costs and reduce risks. Full article
(This article belongs to the Special Issue Drug Repositioning)
Show Figures

Figure 1

280 KiB  
Review
Are AMPA Receptor Positive Allosteric Modulators Potential Pharmacotherapeutics for Addiction?
by Lucas R. Watterson and M. Foster Olive
Pharmaceuticals 2014, 7(1), 29-45; https://doi.org/10.3390/ph7010029 - 30 Dec 2013
Cited by 166 | Viewed by 6728
Abstract
Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of [...] Read more.
Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications. Full article
(This article belongs to the Special Issue Allosteric Modulators)
Show Figures

Figure 1

191 KiB  
Review
Immunosuppressive Therapy in Immune-Mediated Liver Disease in the Non-Transplanted Patient
by Anita Abhyankar, Elliot Tapper and Alan Bonder
Pharmaceuticals 2014, 7(1), 18-28; https://doi.org/10.3390/ph7010018 - 30 Dec 2013
Cited by 166 | Viewed by 5420
Abstract
Autoimmune liver disease management goals are primarily slowing disease progression and symptomatic treatment. There are few options for curative medical management other than transplant for a spectrum of autoimmune liver disease that encompasses autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis as well [...] Read more.
Autoimmune liver disease management goals are primarily slowing disease progression and symptomatic treatment. There are few options for curative medical management other than transplant for a spectrum of autoimmune liver disease that encompasses autoimmune hepatitis, primary biliary cirrhosis, primary sclerosing cholangitis as well as their overlap syndromes. These diseases are managed primarily with immunosuppressive therapy. Herein, we review the current literature, detailing the promise and pitfalls of the recommended immunosuppressive therapy for these challenging diseases. Full article
(This article belongs to the Special Issue Immunosuppressant Drugs)
414 KiB  
Article
A New Phenylpyrazoleanilide, Y-320, Inhibits Interleukin 17 Production and Ameliorates Collagen-Induced Arthritis in Mice and Cynomolgus Monkeys
by Hiroyuki Ushio, Seigo Ishibuchi, Koichi Oshita, Noriyasu Seki, Hirotoshi Kataoka, Kunio Sugahara, Kunitomo Adachi and Kenji Chiba
Pharmaceuticals 2014, 7(1), 1-17; https://doi.org/10.3390/ph7010001 - 23 Dec 2013
Cited by 7 | Viewed by 8080
Abstract
Interleukin (IL)-15 and IL-17 are thought to play an important role in the pathogenesis of rheumatoid arthritis (RA) because both pro-inflammatory cytokines are found in synovial fluid of RA patients. In this study, we examined the pharmacological profiles of Y-320, a new phenylpyrazoleanilide [...] Read more.
Interleukin (IL)-15 and IL-17 are thought to play an important role in the pathogenesis of rheumatoid arthritis (RA) because both pro-inflammatory cytokines are found in synovial fluid of RA patients. In this study, we examined the pharmacological profiles of Y-320, a new phenylpyrazoleanilide immunomodulator. Y-320 inhibited IL-17 production by CD4 T cells stimulated with IL-15 with IC50 values of 20 to 60 nM. Oral administration of Y-320 (0.3 to 3 mg/kg) significantly inhibited the development and progression of arthritis and joint destruction with reduction of IL-17 mRNA expression in arthritic joints of type II collagen-induced arthritis (CIA) in DBA/1J mice. Y-320 in combination with anti-murine tumor necrosis factor-α monoclonal antibody showed a synergistic effect on mouse CIA. Moreover, therapeutic treatment with Y-320 (0.3 and 1 mg/kg orally) ameliorated CIA in cynomolgus monkeys. Our results suggest that Y-320, an orally active inhibitor for IL-17 production, provides a useful therapy for RA. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop