Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Int. J. Mol. Sci., Volume 18, Issue 8 (August 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story During infection, the influenza A virus must engage with the host cellular protein interaction [...] Read more.
View options order results:
result details:
Displaying articles 1-210
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessArticle Reprimo, a Potential p53-Dependent Tumor Suppressor Gene, Is Frequently Hypermethylated in Estrogen Receptor α-Positive Breast Cancer
Int. J. Mol. Sci. 2017, 18(8), 1525; doi:10.3390/ijms18081525
Received: 25 May 2017 / Revised: 1 July 2017 / Accepted: 5 July 2017 / Published: 15 August 2017
PDF Full-text (3334 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Aberrant DNA methylation is a hallmark of many cancers. Currently, there are four intrinsic molecular subtypes in breast cancer (BC): Luminal A, B, Her2-positive, and triple negative (TNBC). Recently, The Cancer Genome Atlas (TCGA) project has revealed that Luminal subtypes have higher levels
[...] Read more.
Aberrant DNA methylation is a hallmark of many cancers. Currently, there are four intrinsic molecular subtypes in breast cancer (BC): Luminal A, B, Her2-positive, and triple negative (TNBC). Recently, The Cancer Genome Atlas (TCGA) project has revealed that Luminal subtypes have higher levels of genome-wide methylation that may be a result of Estrogen/Estrogen receptor α (E2/ERα) signaling pathway activation. In this study, we analyze promoter CpG-island (CGIs) of the Reprimo (RPRM) gene in breast cancers (n = 77), cell lines (n = 38), and normal breast tissue (n = 10) using a MBDCap-seq database. Then, a validation cohort (n = 26) was used to confirm the results found in the MBDCap-seq platform. A differential methylation pattern was found between BC and cell lines compared to normal breast tissue. In BC, a higher DNA methylation was observed in tissues that were ERα-positive than in ERα-negative ones; more precisely, subtypes Luminal A compared to TNBC. Also, significant reverse correlation was observed between DNA methylation and RPRM mRNA expression in BC. Our data suggest that ERα expression in BC may affect the DNA methylation of CGIs in the RPRM gene. This approach suggests that DNA methylation status in CGIs of some tumor suppressor genes could be driven by E2 availability, subsequently inducing the activation of the ERα pathway. Full article
(This article belongs to the Special Issue Cancer Epigenetics)
Figures

Figure 1a

Open AccessArticle Conditioned Medium from Malignant Breast Cancer Cells Induces an EMT-Like Phenotype and an Altered N-Glycan Profile in Normal Epithelial MCF10A Cells
Int. J. Mol. Sci. 2017, 18(8), 1528; doi:10.3390/ijms18081528
Received: 24 May 2017 / Revised: 11 July 2017 / Accepted: 12 July 2017 / Published: 1 August 2017
PDF Full-text (9290 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Epithelial-mesenchymal transition (EMT) is a key process in cancer development and progression. Communication (crosstalk) between cancer cells and normal (nonmalignant) cells may facilitate cancer progression. Conditioned medium (CM) obtained from cultured cancer cells contains secreted factors capable of affecting phenotypes and the behaviors
[...] Read more.
Epithelial-mesenchymal transition (EMT) is a key process in cancer development and progression. Communication (crosstalk) between cancer cells and normal (nonmalignant) cells may facilitate cancer progression. Conditioned medium (CM) obtained from cultured cancer cells contains secreted factors capable of affecting phenotypes and the behaviors of normal cells. In this study, a culture of normal breast epithelial MCF10A cells with CM from malignant breast cancer cells (termed 231-CM and 453-CM) resulted in an alteration of morphology. CM-treated MCF10A, in comparison with control cells, showed a reduced expression of the epithelial marker E-cadherin, increased expression of the mesenchymal markers fibronectin, vimentin, N-cadherin, and TWIST1, meanwhile cell proliferation and migration were enhanced while cell apoptosis was decreased. N-glycan profiles of 231-CM-treated and control MCF10A cells were compared by MALDI-TOF/TOF-MS (Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry) and a lectin microarray analysis. The treated cells showed lower levels of high-mannose-type N-glycan structures, and higher levels of complex-type and hybrid-type structures. Altered N-glycan profiles were also detected in 453-CM-treated and non-treated MCF10A cells by MALDI-TOF/TOF-MS, and we found that the expression of five fucosylated N-glycan structures (m/z 1406.663, 1590.471, 1668.782, 2421.141, and 2988.342) and one high-mannose structure m/z 1743.722 have the same pattern as 231-CM-treated MCF10A cells. Our findings, taken together, show that CM derived from breast cancer cells induced an EMT-like process in normal epithelial cells and altered their N-glycan profile. Full article
(This article belongs to the Special Issue Glycan–Receptor Interaction 2017)
Figures

Open AccessArticle The AGPase Family Proteins in Banana: Genome-Wide Identification, Phylogeny, and Expression Analyses Reveal Their Involvement in the Development, Ripening, and Abiotic/Biotic Stress Responses
Int. J. Mol. Sci. 2017, 18(8), 1581; doi:10.3390/ijms18081581
Received: 29 June 2017 / Revised: 13 July 2017 / Accepted: 18 July 2017 / Published: 25 July 2017
PDF Full-text (2772 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
ADP-glucose pyrophosphorylase (AGPase) is the first rate-limiting enzyme in starch biosynthesis and plays crucial roles in multiple biological processes. Despite its importance, AGPase is poorly studied in starchy fruit crop banana (Musa acuminata L.). In this study, eight MaAGPase genes have been
[...] Read more.
ADP-glucose pyrophosphorylase (AGPase) is the first rate-limiting enzyme in starch biosynthesis and plays crucial roles in multiple biological processes. Despite its importance, AGPase is poorly studied in starchy fruit crop banana (Musa acuminata L.). In this study, eight MaAGPase genes have been identified genome-wide in M. acuminata, which could be clustered into the large (APL) and small (APS) subunits. Comprehensive transcriptomic analysis revealed temporal and spatial expression variations of MaAPLs and MaAPSs and their differential responses to abiotic/biotic stresses in two banana genotypes, Fen Jiao (FJ) and BaXi Jiao (BX). MaAPS1 showed generally high expression at various developmental and ripening stages and in response to abiotic/biotic stresses in both genotypes. MaAPL-3 and -2a were specifically induced by abiotic stresses including cold, salt, and drought, as well as by fungal infection in FJ, but not in BX. The presence of hormone-related and stress-relevant cis-acting elements in the promoters of MaAGPase genes suggests that MaAGPases may play an important role in multiple biological processes. Taken together, this study provides new insights into the complex transcriptional regulation of AGPases, underlying their key roles in promoting starch biosynthesis and enhancing stress tolerance in banana. Full article
(This article belongs to the Special Issue Selected Papers from the 6th National Plant Protein Research Congress)
Figures

Open AccessArticle Unusual Antioxidant Properties of 26S Proteasome Isolated from Cold-Adapted Organisms
Int. J. Mol. Sci. 2017, 18(8), 1605; doi:10.3390/ijms18081605
Received: 6 June 2017 / Revised: 10 July 2017 / Accepted: 18 July 2017 / Published: 25 July 2017
PDF Full-text (2372 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The oxidative challenge represents an important factor affecting the adaptive strategies in Antarctic fish, but their impact on the protein degradation machinery still remains unclear. The previous analysis of the first 26S proteasome from the Antarctic red-blooded fish Trematomus bernacchii, evidenced improved
[...] Read more.
The oxidative challenge represents an important factor affecting the adaptive strategies in Antarctic fish, but their impact on the protein degradation machinery still remains unclear. The previous analysis of the first 26S proteasome from the Antarctic red-blooded fish Trematomus bernacchii, evidenced improved antioxidant functions necessary to counteract the environmental pro-oxidant conditions. The purpose of this work was to carry out a study on 26S proteasomes from the temperate red-blooded Dicenthrarcus labrax and the icefish Chionodraco hamatus in comparison with the isoform already described from T. bernacchii, to better elucidate the cold-adapted physiological functions of this complex. Therefore, the 26S isoforms were isolated and the complementary DNAs (cDNAs) codifying the catalytic subunits were cloned. The biochemical characterization of Antarctic 26S proteasomes revealed their significantly higher structural stability and resistance to H2O2 with respect to that of the temperate counterpart, as also suggested by a comparative modeling analysis of the catalytic subunits. Moreover, in contrast to that observed in T. bernacchii, the 26S systems from C. hamatus and D. labrax were incapable to hydrolyze oxidized proteins in a ubiquitin-independent manner. Therefore, the ‘uncommon’ properties displayed by the Antarctic 26S proteasomes can mirror the impact exercised by evolutionary pressure in response to richly oxygenated environments. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Figures

Figure 1

Open AccessArticle Arginase Inhibition Reverses Monocrotaline-Induced Pulmonary Hypertension
Int. J. Mol. Sci. 2017, 18(8), 1609; doi:10.3390/ijms18081609
Received: 4 June 2017 / Revised: 13 July 2017 / Accepted: 20 July 2017 / Published: 25 July 2017
PDF Full-text (3175 KB) | HTML Full-text | XML Full-text
Abstract
Pulmonary hypertension (PH) is a heterogeneous disorder associated with a poor prognosis. Thus, the development of novel treatment strategies is of great interest. The enzyme arginase (Arg) is emerging as important player in PH development. The aim of the current study was to
[...] Read more.
Pulmonary hypertension (PH) is a heterogeneous disorder associated with a poor prognosis. Thus, the development of novel treatment strategies is of great interest. The enzyme arginase (Arg) is emerging as important player in PH development. The aim of the current study was to determine the expression of ArgI and ArgII as well as the effects of Arg inhibition in a rat model of PH. PH was induced in 35 Sprague–Dawley rats by monocrotaline (MCT, 60 mg/kg as single-dose). There were three experimental groups: sham-treated controls (control group, n = 11), MCT-induced PH (MCT group, n = 11) and MCT-induced PH treated with the Arg inhibitor Nω-hydroxy-nor-l-arginine (nor-NOHA; MCT/NorNoha group, n = 13). ArgI and ArgII expression was determined by immunohistochemistry and Western blot. Right ventricular systolic pressure (RVPsys) was measured and lung tissue remodeling was determined. Induction of PH resulted in an increase in RVPsys (81 ± 16 mmHg) compared to the control group (41 ± 15 mmHg, p = 0.002) accompanied by a significant elevation of histological sum-score (8.2 ± 2.4 in the MCT compared to 1.6 ± 1.6 in the control group, p < 0.001). Both, ArgI and ArgII were relevantly expressed in lung tissue and there was a significant increase in the MCT compared to the control group (p < 0.01). Arg inhibition resulted in a significant reduction of RVPsys to 52 ± 19 mmHg (p = 0.006) and histological sum-score to 5.8 ± 1.4 compared to the MCT group (p = 0.022). PH leads to increased expression of Arg. Arg inhibition leads to reduction of RVPsys and diminished lung tissue remodeling and therefore represents a potential treatment strategy in PH. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Open AccessCommunication Microbubbles-Assisted Ultrasound Triggers the Release of Extracellular Vesicles
Int. J. Mol. Sci. 2017, 18(8), 1610; doi:10.3390/ijms18081610
Received: 25 June 2017 / Revised: 12 July 2017 / Accepted: 16 July 2017 / Published: 25 July 2017
PDF Full-text (1958 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Microbubbles-assisted ultrasound (USMB) has shown promise in improving local drug delivery. The formation of transient membrane pores and endocytosis are reported to be enhanced by USMB, and they contribute to cellular drug uptake. Exocytosis also seems to be linked to endocytosis upon USMB
[...] Read more.
Microbubbles-assisted ultrasound (USMB) has shown promise in improving local drug delivery. The formation of transient membrane pores and endocytosis are reported to be enhanced by USMB, and they contribute to cellular drug uptake. Exocytosis also seems to be linked to endocytosis upon USMB treatment. Based on this rationale, we investigated whether USMB triggers exocytosis resulting in the release of extracellular vesicles (EVs). USMB was performed on a monolayer of head-and-neck cancer cells (FaDu) with clinically approved microbubbles and commonly used ultrasound parameters. At 2, 4, and 24 h, cells and EV-containing conditioned media from USMB and control conditions (untreated cells, cells treated with microbubbles and ultrasound only) were harvested. EVs were measured using flow cytometric immuno-magnetic bead capture assay, immunogold electron microscopy, and western blotting. After USMB, levels of CD9 exposing-EVs significantly increased at 2 and 4 h, whereas levels of CD63 exposing-EVs increased at 2 h. At 24 h, EV levels were comparable to control levels. EVs released after USMB displayed a heterogeneous size distribution profile (30–1200 nm). Typical EV markers CD9, CD63, and alix were enriched in EVs released from USMB-treated FaDu cells. In conclusion, USMB treatment triggers exocytosis leading to the release of EVs from FaDu cells. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Open AccessArticle Expression of Serum Exosomal and Esophageal MicroRNA in Rat Reflux Esophagitis
Int. J. Mol. Sci. 2017, 18(8), 1611; doi:10.3390/ijms18081611
Received: 9 June 2017 / Revised: 18 July 2017 / Accepted: 20 July 2017 / Published: 25 July 2017
PDF Full-text (1662 KB) | HTML Full-text | XML Full-text
Abstract
Gastroesophageal reflux disease (GERD) is a common upper gastrointestinal disease. However, the role of exosomal microRNAs (miRNAs) and esophageal miRNAs in GERD has not been studied. A rat model of acid reflux esophagitis was used to establish a novel diagnosis marker for GERD
[...] Read more.
Gastroesophageal reflux disease (GERD) is a common upper gastrointestinal disease. However, the role of exosomal microRNAs (miRNAs) and esophageal miRNAs in GERD has not been studied. A rat model of acid reflux esophagitis was used to establish a novel diagnosis marker for GERD and examine dynamics of miRNA expression in GERD. Rats were sacrificed 3 (acute phase), 7 (sub-acute phase) and 21 days (chronic phase) after induction of esophagitis. Exosomes were extracted from serum, and the expression patterns of serum miRNAs were analyzed. Four upregulated miRNAs (miR-29a-3p, 128-3p, 223-3p and 3473) were identified by microarray analysis. The expression levels of exosomal miR-29a-3p were significantly higher in the chronic phase of reflux esophagitis compared with controls, and increased expression of miR-29a-3p was specific to chronic reflux esophagitis. Esophageal miR-223-3p expression was higher compared with controls, and gradually decreased from acute to chronic phase in esophagitis. In conclusion, exosomal miR-29a-3p and esophageal miR-223-3p might play roles in GERD. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Open AccessArticle Lactacystin-Induced Model of Hypertension in Rats: Effects of Melatonin and Captopril
Int. J. Mol. Sci. 2017, 18(8), 1612; doi:10.3390/ijms18081612
Received: 26 May 2017 / Revised: 10 July 2017 / Accepted: 13 July 2017 / Published: 25 July 2017
PDF Full-text (2451 KB) | HTML Full-text | XML Full-text
Abstract
Lactacystin is a proteasome inhibitor that interferes with several factors involved in heart remodelling. The aim of this study was to investigate whether the chronic administration of lactacystin induces hypertension and heart remodelling and whether these changes can be modified by captopril or
[...] Read more.
Lactacystin is a proteasome inhibitor that interferes with several factors involved in heart remodelling. The aim of this study was to investigate whether the chronic administration of lactacystin induces hypertension and heart remodelling and whether these changes can be modified by captopril or melatonin. In addition, the lactacystin-model was compared with NG-nitro-l-arginine-methyl ester (L-NAME)- and continuous light-induced hypertension. Six groups of three-month-old male Wistar rats (11 per group) were treated for six weeks as follows: control (vehicle), L-NAME (40 mg/kg/day), continuous light (24 h/day), lactacystin (5 mg/kg/day) alone, and lactacystin with captopril (100 mg/kg/day), or melatonin (10 mg/kg/day). Lactacystin treatment increased systolic blood pressure (SBP) and induced fibrosis of the left ventricle (LV), as observed in L-NAME-hypertension and continuous light-hypertension. LV weight and the cross-sectional area of the aorta were increased only in L-NAME-induced hypertension. The level of oxidative load was preserved or reduced in all three models of hypertension. Nitric oxide synthase (NOS) activity in the LV and kidney was unchanged in the lactacystin group. Nuclear factor-kappa B (NF-κB) protein expression in the LV was increased in all treated groups in the cytoplasm, however, in neither group in the nucleus. Although melatonin had no effect on SBP, only this indolamine (but not captopril) reduced the concentration of insoluble and total collagen in the LV and stimulated the NO-pathway in the lactacystin group. We conclude that chronic administration of lactacystin represents a novel model of hypertension with collagenous rebuilding of the LV, convenient for testing antihypertensive drugs or agents exerting a cardiovascular benefit beyond blood pressure reduction. Full article
(This article belongs to the Special Issue Melatonin and Its Analogues: Experimental and Clinical Aspects)
Figures

Open AccessArticle Porcine Interferon Stimulated Gene 12a Restricts Porcine Reproductive and Respiratory Syndrome Virus Replication in MARC-145 Cells
Int. J. Mol. Sci. 2017, 18(8), 1613; doi:10.3390/ijms18081613
Received: 22 June 2017 / Revised: 14 July 2017 / Accepted: 18 July 2017 / Published: 25 July 2017
PDF Full-text (4429 KB) | HTML Full-text | XML Full-text
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe losses in the global pig industry. In the present study, we investigated the molecular characterization of porcine interferon stimulated gene 12a (ISG12A) and confirmed its anti-PRRSV ability for the first time. We
[...] Read more.
Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe losses in the global pig industry. In the present study, we investigated the molecular characterization of porcine interferon stimulated gene 12a (ISG12A) and confirmed its anti-PRRSV ability for the first time. We found that porcine ISG12A was localized in mitochondria and significantly decreased the number of cells in G2/S phase. Porcine ISG12A mRNA was up-regulated in cells/tissues of Tongcheng (TC) pigs and Large White (LW) pigs after PRRSV challenge. More importantly, the ectopic overexpression of ISG12A could significantly suppress PRRSV replication at 24, 36 and 48 h post challenge (hpc), which was confirmed by detecting PRRSV ORF7 mRNA with quantitative reverse transcription polymerase chain reaction (qRT-PCR) and PRRSV N protein with indirect immunofluorescence assay (IFA) in MARC-145 cells. Meanwhile, knockdown of endogenic ISG12A could obviously facilitate PRRSV replication in MARC-145 cells at 36 hpc. The results will lead to a better understanding of the interaction between host immune system and PRRSV, which may help us develop novel therapeutic tools to control PRRSV. Full article
Figures

Figure 1

Open AccessArticle The Pharmaceutical Device Prisma® Skin Promotes in Vitro Angiogenesis through Endothelial to Mesenchymal Transition during Skin Wound Healing
Int. J. Mol. Sci. 2017, 18(8), 1614; doi:10.3390/ijms18081614
Received: 29 June 2017 / Revised: 12 July 2017 / Accepted: 22 July 2017 / Published: 25 July 2017
PDF Full-text (3070 KB) | HTML Full-text | XML Full-text
Abstract
Glycosaminoglycans are polysaccharides of the extracellular matrix supporting skin wound closure. Mesoglycan is a mixture of glycosaminoglycans such as chondroitin-, dermatan-, heparan-sulfate and heparin and is the main component of Prisma® Skin, a pharmaceutical device developed by Mediolanum Farmaceutici S.p.a. Here, we
[...] Read more.
Glycosaminoglycans are polysaccharides of the extracellular matrix supporting skin wound closure. Mesoglycan is a mixture of glycosaminoglycans such as chondroitin-, dermatan-, heparan-sulfate and heparin and is the main component of Prisma® Skin, a pharmaceutical device developed by Mediolanum Farmaceutici S.p.a. Here, we show the in vitro effects of this device in the new vessels formation by endothelial cells, since angiogenesis represents a key moment in wound healing. We found a strong increase of migration and invasion rates of these cells treated with mesoglycan and Prisma® Skin which mediate the activation of the pathway triggered by CD44 receptor. Furthermore, endothelial cells form longer capillary-like structures with a great number of branches, in the presence of the same treatments. Thus, the device, thanks to the mesoglycan, leads the cells to the Endothelial-to-Mesenchymal Transition, suggesting the switch to a fibroblast-like phenotype, as shown by immunofluorescence assays. Finally, we found that mesoglycan and Prisma® Skin inhibit inflammatory reactions such as nitric oxide secretion and NF-κB nuclear translocation in endothelial cells and Tumor Necrosis Factor-α production by macrophages. In conclusion, based on our data, we suggest that Prisma® Skin may be able to accelerate angiogenesis in skin wound healing, and regulate inflammation avoiding chronic, thus pathological, responses. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Open AccessArticle Tanshinone IIA Inhibits Epithelial-Mesenchymal Transition in Bladder Cancer Cells via Modulation of STAT3-CCL2 Signaling
Int. J. Mol. Sci. 2017, 18(8), 1616; doi:10.3390/ijms18081616
Received: 29 June 2017 / Revised: 20 July 2017 / Accepted: 21 July 2017 / Published: 25 July 2017
PDF Full-text (2898 KB) | HTML Full-text | XML Full-text
Abstract
Tanshinone IIA (Tan-IIA) is an extract from the widely used traditional Chinese medicine (TCM) Danshen (Salvia miltiorrhiza), and has been found to attenuate the proliferation of bladder cancer (BCa) cells (The IC50 were: 5637, 2.6 μg/mL; BFTC, 2 μg/mL; T24,
[...] Read more.
Tanshinone IIA (Tan-IIA) is an extract from the widely used traditional Chinese medicine (TCM) Danshen (Salvia miltiorrhiza), and has been found to attenuate the proliferation of bladder cancer (BCa) cells (The IC50 were: 5637, 2.6 μg/mL; BFTC, 2 μg/mL; T24, 2.7 μg/mL, respectively.). However, the mechanism of the effect of Tan-IIA on migration inhibition of BCa cells remains unclear. This study investigates the anti-metastatic effect of Tan-IIA in human BCa cells and clarifies its molecular mechanism. Three human BCa cell lines, 5637, BFTC and T24, were used for subsequent experiments. Cell migration and invasion were evaluated by transwell assays. Real-time RT-PCR and western blotting were performed to detect epithelial-mesenchymal transition (EMT)-related gene expression. The enzymatic activity of matrix metalloproteinases (MMP) was evaluated by zymography assay. Tan-IIA inhibited the migration and invasion of human BCa cells. Tan-IIA suppressed both the protein expression and enzymatic activity of MMP-9/-2 in human BCa cells. Tan-IIA up-regulated the epithelial marker E-cadherin and down-regulated mesenchymal markers such as N-cadherin and Vimentin, along with transcription regulators such as Snail and Slug in BCa cells in a time- and dose-dependent manner. Mechanism dissection revealed that Tan-IIA-inhibited BCa cell invasion could function via suppressed chemokine (C-C motif) ligand 2 (CCL2) expression, which could be reversed by the addition of CCL2 recombinant protein. Furthermore, Tan-IIA could inhibit the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) (Tyr705), which cannot be restored by the CCL2 recombinant protein addition. These data implicated that Tan-IIA might suppress EMT on BCa cells through STAT3-CCL2 signaling inhibition. Tan-IIA inhibits EMT of BCa cells via modulation of STAT3-CCL2 signaling. Our findings suggest that Tan-IIA can serve as a potential anti-metastatic agent in BCa therapy. Full article
(This article belongs to the Special Issue Chemical and Molecular Approach to Tumor Metastases)
Figures

Open AccessArticle Clinical Outcomes and Co-Occurring Mutations in Patients with RUNX1-Mutated Acute Myeloid Leukemia
Int. J. Mol. Sci. 2017, 18(8), 1618; doi:10.3390/ijms18081618
Received: 21 June 2017 / Revised: 11 July 2017 / Accepted: 14 July 2017 / Published: 26 July 2017
PDF Full-text (3256 KB) | HTML Full-text | XML Full-text
Abstract
(1) Runt-related transcription factor 1 (RUNX1) mutations in acute myeloid leukemia (AML) are often associated with worse prognosis. We assessed co-occurring mutations, response to therapy, and clinical outcomes in patients with and without mutant RUNX1 (mRUNX1); (2) We analyzed
[...] Read more.
(1) Runt-related transcription factor 1 (RUNX1) mutations in acute myeloid leukemia (AML) are often associated with worse prognosis. We assessed co-occurring mutations, response to therapy, and clinical outcomes in patients with and without mutant RUNX1 (mRUNX1); (2) We analyzed 328 AML patients, including 177 patients younger than 65 years who received intensive chemotherapy and 151 patients >65 years who received hypomethylating agents. RUNX1 and co-existing mutations were identified using next-generation sequencing; (3) RUNX1 mutations were identified in 5.1% of younger patients and 15.9% of older patients, and were significantly associated with increasing age (p = 0.01) as well as intermediate-risk cytogenetics including normal karyotype (p = 0.02) in the elderly cohort, and with lower lactate dehydrogenase (LDH; p = 0.02) and higher platelet count (p = 0.012) overall. Identified co-occurring mutations were primarily ASXL1 mutations in older patients and RAS mutations in younger patients; FLT3-ITD and IDH1/2 co-mutations were also frequent. Younger mRUNX1 AML patients treated with intensive chemotherapy experienced inferior treatment outcomes. In older patients with AML treated with hypomethylating agent (HMA) therapy, response and survival was independent of RUNX1 status. Older mRUNX1 patients with prior myelodysplastic syndrome or myeloproliferative neoplasms (MDS/MPN) had particularly dismal outcome. Future studies should focus on the prognostic implications of RUNX1 mutations relative to other co-occurring mutations, and the potential role of hypomethylating agents for this molecularly-defined group. Full article
(This article belongs to the Special Issue The Biology and Treatment of Myeloid Leukaemias)
Figures

Figure 1

Open AccessArticle Mollugin Has an Anti-Cancer Therapeutic Effect by Inhibiting TNF-α-Induced NF-κB Activation
Int. J. Mol. Sci. 2017, 18(8), 1619; doi:10.3390/ijms18081619
Received: 27 May 2017 / Revised: 19 June 2017 / Accepted: 20 July 2017 / Published: 26 July 2017
PDF Full-text (2482 KB) | HTML Full-text | XML Full-text
Abstract
The NF-κB signaling pathway plays a pivotal role in regulating the immune response and inflammation. However, it has been shown that NF-κB also has a major role in oncogenesis. Therefore, NF-κB inhibitors have been considered as potential drugs against cancer. Herein, we searched
[...] Read more.
The NF-κB signaling pathway plays a pivotal role in regulating the immune response and inflammation. However, it has been shown that NF-κB also has a major role in oncogenesis. Therefore, NF-κB inhibitors have been considered as potential drugs against cancer. Herein, we searched for NF-κB inhibitors from natural sources and identified mollugin from the roots of Rubia cordifolia L. as an inhibitor of NF-κB activation. We found that mollugin significantly inhibited the expression of an NF-κB reporter gene induced by tumor necrosis factor (TNF)-α in a dose-dependent manner. Moreover, mollugin inhibited TNF-α-induced phosphorylation and nuclear translocation of p65, phosphorylation and degradation of inhibitor of κB (IκBα), and IκB kinase (IKK) phosphorylation. Furthermore, we discovered that pretreatment of cells with mollugin prevented the TNF-α-induced expression of NF-κB target genes, such as genes related to proliferation (COX-2, Cyclin D1 and c-Myc), anti-apoptosis (Bcl-2, cIAP-1 and survivin), invasion (MMP-9 and ICAM-1), and angiogenesis (VEGF). We also demonstrated that mollugin potentiated TNF-α-induced apoptosis and inhibited proliferation of HeLa cells. We further demonstrated in vivo that mollugin suppressed the growth of tumor xenografts derived from HeLa cells. Taken together, mollugin may be a valuable candidate for cancer treatment by targeting NF-κB. Full article
(This article belongs to the Special Issue Alterations to Signalling Pathways in Cancer Cells)
Figures

Open AccessArticle Melatonin Decreases Glucose Metabolism in Prostate Cancer Cells: A 13C Stable Isotope-Resolved Metabolomic Study
Int. J. Mol. Sci. 2017, 18(8), 1620; doi:10.3390/ijms18081620
Received: 2 July 2017 / Revised: 18 July 2017 / Accepted: 20 July 2017 / Published: 26 July 2017
PDF Full-text (4769 KB) | HTML Full-text | XML Full-text
Abstract
The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative
[...] Read more.
The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while others are mediated by receptor-independent mechanisms. A potential transport of melatonin through facilitative glucose transporters (GLUT/SLC2A) was proposed in prostate cancer cells. The prostate cells have a particular metabolism that changes during tumor progression. During the first steps of carcinogenesis, oxidative phosphorylation is reactivated while the switch to the “Warburg effect” only occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin might change prostate cancer cell metabolism. To do so, 13C stable isotope-resolved metabolomics in androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to metabolite 13C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also lowers 13C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin reduces lactate 13C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in this tumor type. Full article
(This article belongs to the Special Issue Melatonin and Its Analogues: Experimental and Clinical Aspects)
Figures

Figure 1

Open AccessArticle Anti-Oxidative Stress Activity Is Essential for Amanita caesarea Mediated Neuroprotection on Glutamate-Induced Apoptotic HT22 Cells and an Alzheimer’s Disease Mouse Model
Int. J. Mol. Sci. 2017, 18(8), 1623; doi:10.3390/ijms18081623
Received: 14 June 2017 / Revised: 22 July 2017 / Accepted: 24 July 2017 / Published: 27 July 2017
PDF Full-text (3676 KB) | HTML Full-text | XML Full-text
Abstract
Amanita caesarea, an edible mushroom found mainly in Asia and southern Europe, has been reported to show good antioxidative activities. In the present study, the neuroprotective effects of A. caesarea aqueous extract (AC) were determined in an l-glutamic acid (l
[...] Read more.
Amanita caesarea, an edible mushroom found mainly in Asia and southern Europe, has been reported to show good antioxidative activities. In the present study, the neuroprotective effects of A. caesarea aqueous extract (AC) were determined in an l-glutamic acid (l-Glu) induced HT22 cell apoptosis model, and in a d-galactose (d-gal) and AlCl3-developed experimental Alzheimer’s disease (AD) mouse model. In 25 mM of l-Glu-damaged HT22 cells, a 3-h pretreatment with AC strongly improved cell viability, reduced the proportion of apoptotic cells, restored mitochondrial function, inhibited the over-production of intracellular reactive oxygen species (ROS) and Ca2+, and suppressed the high expression levels of cleaved-caspase-3, calpain 1, apoptosis-inducing factor (AIF) and Bax. Compared with HT22 exposed only to l-Glu cells, AC enhanced the phosphorylation activities of protein kinase B (Akt) and the mammalian target of rapamycin (mTOR), and suppressed the phosphorylation activities of phosphatase and tensin homolog deleted on chromosome ten (PTEN). In the experimental AD mouse, 28-day AC administration at doses of 250, 500, and 1000 mg/kg/day strongly enhanced vertical movements and locomotor activities, increased the endurance time in the rotarod test, and decreased the escape latency time in the Morris water maze test. AC also alleviated the deposition of amyloid beta (Aβ) in the brain and improved the central cholinergic system function, as indicated by an increase acetylcholine (Ach) and choline acetyltransferase (ChAT) concentrations and a reduction in acetylcholine esterase (AchE) levels. Moreover, AC reduced ROS levels and enhanced superoxide dismutase (SOD) levels in the brain of experimental AD mice. Taken together, our data provide experimental evidence that A. caesarea may serve as potential food for treating or preventing neurodegenerative diseases. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2017)
Figures

Open AccessArticle High Salt Tolerance of a Bradyrhizobium Strain and Its Promotion of the Growth of Stylosanthes guianensis
Int. J. Mol. Sci. 2017, 18(8), 1625; doi:10.3390/ijms18081625
Received: 6 June 2017 / Revised: 20 July 2017 / Accepted: 20 July 2017 / Published: 28 July 2017
PDF Full-text (1854 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Salinity is a serious limiting factor for the growth of rhizobia. Some rhizobia are tolerant to salt stress and promote plant growth, but the mechanisms underlying these effects are poorly characterized. The growth responses and osmoprotectants in four Bradyrhizobium strains were examined under
[...] Read more.
Salinity is a serious limiting factor for the growth of rhizobia. Some rhizobia are tolerant to salt stress and promote plant growth, but the mechanisms underlying these effects are poorly characterized. The growth responses and osmoprotectants in four Bradyrhizobium strains were examined under salt stress in this study. Two-dimensional electrophoresis (2-DE) and mass spectrometry were conducted to investigate protein profiles in rhizobia exposed to salt stress. Subsequently, salt tolerance in stylo (Stylosanthes guianensis) inoculated with rhizobia was further detected in hydroponics. Results showed that the Bradyrhizobium strain RJS9-2 exhibited higher salt tolerance than the other three Bradyrhizobium strains. RJS9-2 was able to grow at 0.35 M NaCl treatment, while the other three Bradyrhizobium strains did not grow at 0.1 M NaCl treatment. Salt stress induced IAA production, and accumulation of proline, betaine, ectoine, and trehalose was observed in RJS9-2 but not in PN13-1. Proteomics analysis identified 14 proteins regulated by salt stress in RJS9-2 that were mainly related to the ABC transporter, stress response, and protein metabolism. Furthermore, under saline conditions, the nodule number, plant dry weight, and N concentration in stylo plants inoculated with RJS9-2 were higher than those in plants inoculated with PN13-1. These results suggest that the tolerance of RJS9-2 to salt stress may be achieved by the coordination of indole-3-acetic acid (IAA) production, osmoprotectant accumulation, and protein expression, thus promoting stylo growth. Full article
(This article belongs to the Special Issue Selected Papers from the 6th National Plant Protein Research Congress)
Figures

Open AccessArticle Sulfur Protects Pakchoi (Brassica chinensis L.) Seedlings against Cadmium Stress by Regulating Ascorbate-Glutathione Metabolism
Int. J. Mol. Sci. 2017, 18(8), 1628; doi:10.3390/ijms18081628
Received: 15 June 2017 / Revised: 18 July 2017 / Accepted: 22 July 2017 / Published: 26 July 2017
PDF Full-text (5709 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Cadmium (Cd) pollution in food chains pose a potential health risk for humans. Sulfur (S) is a significant macronutrient that plays a significant role in the regulation of plant responses to diverse biotic and abiotic stresses. However, no information is currently available about
[...] Read more.
Cadmium (Cd) pollution in food chains pose a potential health risk for humans. Sulfur (S) is a significant macronutrient that plays a significant role in the regulation of plant responses to diverse biotic and abiotic stresses. However, no information is currently available about the impact of S application on ascorbate-glutathione metabolism (ASA-GSH cycle) of Pakchoi plants under Cd stress. The two previously identified genotypes, namely, Aikangqing (a Cd-tolerant cultivar) and Qibaoqing (a Cd-sensitive cultivar), were utilized to investigate the role of S to mitigate Cd toxicity in Pakchoi plants under different Cd regimes. Results showed that Cd stress inhibited plant growth and induced oxidative stress. Exogenous application of S significantly increased the tolerance of Pakchoi seedlings suffering from Cd stress. This effect was demonstrated by increased growth parameters; stimulated activities of the antioxidant enzymes and upregulated genes involved in the ASA-GSH cycle and S assimilation; and by the enhanced ASA, GSH, phytochelatins, and nonprotein thiol production. This study shows that applying S nutrition can mitigate Cd toxicity in Pakchoi plants which has the potential in assisting the development of breeding strategies aimed at limiting Cd phytoaccumulation and decreasing Cd hazards in the food chain. Full article
(This article belongs to the Special Issue Abiotic Stress and Gene Networks in Plants 2017)
Figures

Open AccessArticle PGK1 Drives Hepatocellular Carcinoma Metastasis by Enhancing Metabolic Process
Int. J. Mol. Sci. 2017, 18(8), 1630; doi:10.3390/ijms18081630
Received: 16 May 2017 / Revised: 12 July 2017 / Accepted: 22 July 2017 / Published: 27 July 2017
PDF Full-text (5589 KB) | HTML Full-text | XML Full-text
Abstract
During the proliferation and metastasis, the tumor cells prefer glycolysis (Warburg effect), but its exact mechanism remains largely unknown. In this study, we demonstrated that phosphoglycerate kinase 1 (PGK1) is an important enzyme in the pathway of metabolic glycolysis. We observed a significant
[...] Read more.
During the proliferation and metastasis, the tumor cells prefer glycolysis (Warburg effect), but its exact mechanism remains largely unknown. In this study, we demonstrated that phosphoglycerate kinase 1 (PGK1) is an important enzyme in the pathway of metabolic glycolysis. We observed a significant overexpression of PGK1 in hepatocellular carcinoma tissues, and a correlation between PGK1 expression and poor survival of hepatocellular carcinoma patients. Also, the depletion of PGK1 dramatically reduced cancer cell proliferation and metastasis, indicating an oncogenic role of PGK1 in liver cancer progression. Further experiments showed that PGK1 played an important role in MYC-induced metabolic reprogramming, which led to an enhanced Warburg effect. Our results revealed a new effect of PGK1, which can provide a new treatment strategy for hepatocellular carcinoma, as PGK1 is used to indicate the prognosis of hepatocellular carcinoma (HCC). Full article
(This article belongs to the Special Issue Chemical and Molecular Approach to Tumor Metastases)
Figures

Figure 1

Open AccessArticle Host Response Comparison of H1N1- and H5N1-Infected Mice Identifies Two Potential Death Mechanisms
Int. J. Mol. Sci. 2017, 18(8), 1631; doi:10.3390/ijms18081631
Received: 29 May 2017 / Revised: 12 July 2017 / Accepted: 20 July 2017 / Published: 27 July 2017
PDF Full-text (2731 KB) | HTML Full-text | XML Full-text
Abstract
Highly pathogenic influenza A viruses (IAV) infections represent a serious threat to humans due to their considerable morbidity and mortality capacities. A good understanding of the molecular mechanisms responsible for the acute lung injury observed during this kind of infection is essential to
[...] Read more.
Highly pathogenic influenza A viruses (IAV) infections represent a serious threat to humans due to their considerable morbidity and mortality capacities. A good understanding of the molecular mechanisms responsible for the acute lung injury observed during this kind of infection is essential to design adapted therapies. In the current study, using an unbiased transcriptomic approach, we compared the host-responses of mice infected with two different subtypes of IAV: H1N1 vs. H5N1. The host-response comparison demonstrated a clear difference between the transcriptomic profiles of H1N1- and H5N1-infected mice despite identical survival kinetics and similar viral replications. The ontological analysis of the two transcriptomes showed two probable causes of death: induction of an immunopathological state of the lung for the H1N1 strain vs. development of respiratory dysfunction in the case of the H5N1 IAV. Finally, a clear signature responsible for lung edema was specifically associated with the H5N1 infection. We propose a potential mechanism of edema development based on predictive bioinformatics tools. Full article
Figures

Open AccessArticle Clinical Role of ASCT2 (SLC1A5) in KRAS-Mutated Colorectal Cancer
Int. J. Mol. Sci. 2017, 18(8), 1632; doi:10.3390/ijms18081632
Received: 29 June 2017 / Revised: 24 July 2017 / Accepted: 24 July 2017 / Published: 27 July 2017
PDF Full-text (2817 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Mutation in the KRAS gene induces prominent metabolic changes. We have recently reported that KRAS mutations in colorectal cancer (CRC) cause alterations in amino acid metabolism. However, it remains to be investigated which amino acid transporter can be regulated by mutated KRAS in
[...] Read more.
Mutation in the KRAS gene induces prominent metabolic changes. We have recently reported that KRAS mutations in colorectal cancer (CRC) cause alterations in amino acid metabolism. However, it remains to be investigated which amino acid transporter can be regulated by mutated KRAS in CRC. Here, we performed a screening of amino acid transporters using quantitative reverse-transcription polymerase chain reaction (RT-PCR) and then identified that ASCT2 (SLC1A5) was up-regulated through KRAS signaling. Next, immunohistochemical analysis of 93 primary CRC specimens revealed that there was a significant correlation between KRAS mutational status and ASCT2 expression. In addition, the expression level of ASCT2 was significantly associated with tumor depth and vascular invasion in KRAS-mutant CRC. Notably, significant growth suppression and elevated apoptosis were observed in KRAS-mutant CRC cells upon SLC1A5-knockdown. ASCT2 is generally known to be a glutamine transporter. Interestingly, SLC1A5-knockdown exhibited a more suppressive effect on cell growth than glutamine depletion. Furthermore, SLC1A5-knockdown also resulted in the suppression of cell migration. These results indicated that ASCT2 (SLC1A5) could be a novel therapeutic target against KRAS-mutant CRC. Full article
(This article belongs to the Special Issue Chemical and Molecular Approach to Tumor Metastases)
Figures

Open AccessArticle Allelic Complexity in Long QT Syndrome: A Family-Case Study
Int. J. Mol. Sci. 2017, 18(8), 1633; doi:10.3390/ijms18081633
Received: 18 May 2017 / Revised: 13 July 2017 / Accepted: 21 July 2017 / Published: 27 July 2017
PDF Full-text (4353 KB) | HTML Full-text | XML Full-text
Abstract
Congenital long QT syndrome (LQTS) is associated with high genetic and allelic heterogeneity. In some cases, more than one genetic variant is identified in the same (compound heterozygosity) or different (digenic heterozygosity) genes, and subjects with multiple pathogenic mutations may have a more
[...] Read more.
Congenital long QT syndrome (LQTS) is associated with high genetic and allelic heterogeneity. In some cases, more than one genetic variant is identified in the same (compound heterozygosity) or different (digenic heterozygosity) genes, and subjects with multiple pathogenic mutations may have a more severe disease. Standard-of-care clinical genetic testing for this and other arrhythmia susceptibility syndromes improves the identification of complex genotypes. Therefore, it is important to distinguish between pathogenic mutations and benign rare variants. We identified four genetic variants (KCNQ1-p.R583H, KCNH2-p.C108Y, KCNH2-p.K897T, and KCNE1-p.G38S) in an LQTS family. On the basis of in silico analysis, clinical data from our family, and the evidence from previous studies, we analyzed two mutated channels, KCNQ1-p.R583H and KCNH2-p.C108Y, using the whole-cell patch clamp technique. We found that KCNQ1-p.R583H was not associated with a severe functional impairment, whereas KCNH2-p.C108Y, a novel variant, encoded a non-functional channel that exerts dominant-negative effects on the wild-type. Notably, the common variants KCNH2-p.K897T and KCNE1-p.G38S were previously reported to produce more severe phenotypes when combined with disease-causing alleles. Our results indicate that the novel KCNH2-C108Y variant can be a pathogenic LQTS mutation, whereas KCNQ1-p.R583H, KCNH2-p.K897T, and KCNE1-p.G38S could be LQTS modifiers. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Figures

Open AccessArticle Transcriptome Analysis Reveals Increases in Visceral Lipogenesis and Storage and Activation of the Antigen Processing and Presentation Pathway during the Mouth-Opening Stage in Zebrafish Larvae
Int. J. Mol. Sci. 2017, 18(8), 1634; doi:10.3390/ijms18081634
Received: 4 July 2017 / Revised: 20 July 2017 / Accepted: 21 July 2017 / Published: 31 July 2017
PDF Full-text (4811 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The larval phase of the fish life cycle has the highest mortality, particularly during the transition from endogenous to exogenous feeding. However, the transcriptional events underlying these processes have not been fully characterized. To understand the molecular mechanisms underlying mouth-opening acclimation, RNA-seq was
[...] Read more.
The larval phase of the fish life cycle has the highest mortality, particularly during the transition from endogenous to exogenous feeding. However, the transcriptional events underlying these processes have not been fully characterized. To understand the molecular mechanisms underlying mouth-opening acclimation, RNA-seq was used to investigate the transcriptional profiles of the endogenous feeding, mixed feeding and exogenous feeding stages of zebrafish larvae. Differential expression analysis showed 2172 up-regulated and 2313 down-regulated genes during this stage. Genes associated with the assimilation of exogenous nutrients such as the arachidonic acid metabolism, linoleic acid metabolism, fat digestion and absorption, and lipogenesis were activated significantly, whereas dissimilation including the cell cycle, homologous recombination, and fatty acid metabolism were inhibited, indicating a physiological switch for energy storage occurred during the mouth-opening stage. Moreover, the immune recognition involved in the antigen processing and presentation pathway was activated and nutritional supply seemed to be required in this event confirmed by qPCR. These results suggested the energy utilization during the mouth-opening stage is more tended to be reserved or used for some important demands, such as activity regulation, immune defense, and lipid deposition, instead of rapid growth. The findings of this study are important for understanding the physiological switches during the mouth-opening stage. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Figures

Open AccessArticle Cannabinoid Receptor 1 and Fatty Acid Amide Hydrolase Contribute to Operant Sensation Seeking in Mice
Int. J. Mol. Sci. 2017, 18(8), 1635; doi:10.3390/ijms18081635
Received: 19 June 2017 / Revised: 21 July 2017 / Accepted: 25 July 2017 / Published: 27 July 2017
PDF Full-text (1905 KB) | HTML Full-text | XML Full-text
Abstract
A large body of evidence in humans and preclinical models supports a role for the endocannabinoid system in the proper execution of motivated or goal-directed behaviors. Operant sensation seeking (OSS) is a task that uses varied sensory stimuli as a reinforcer to maintain
[...] Read more.
A large body of evidence in humans and preclinical models supports a role for the endocannabinoid system in the proper execution of motivated or goal-directed behaviors. Operant sensation seeking (OSS) is a task that uses varied sensory stimuli as a reinforcer to maintain operant responding in mice. The purpose of the studies in this report was to begin to explore the role of endocannabinoid signaling in OSS utilizing cannabinoid receptor 1 (CB1R) and fatty acid amide hydrolase (FAAH) knock out mice. Compared to wild type littermate controls, CB1R knock out mice exhibited significantly fewer active responses and earned significantly fewer reinforcers in fixed ratio and progressive ratio schedules. On the other hand, FAAH knock out mice exhibited increased active responses and earned more reinforcers than wild type littermates in fixed ratio but not progressive ratio schedules. These findings support the role of endocannabinoid signaling in motivated behaviors and also expand our understanding of the signaling processes involved in OSS. Full article
(This article belongs to the Special Issue Cannabinoid Signaling in Nervous System)
Figures

Figure 1

Open AccessArticle Effects of Melatonin on Early Pregnancy in Mouse: Involving the Regulation of StAR, Cyp11a1, and Ihh Expression
Int. J. Mol. Sci. 2017, 18(8), 1637; doi:10.3390/ijms18081637
Received: 3 April 2017 / Revised: 18 July 2017 / Accepted: 21 July 2017 / Published: 27 July 2017
PDF Full-text (5916 KB) | HTML Full-text | XML Full-text
Abstract
To test whether melatonin plays an important role in the process of early pregnancy, melatonin was given in drinking water to pregnant mice at different gestation stages. These included mice who were given melatonin 14 days prior to their successful mating (confirmed by
[...] Read more.
To test whether melatonin plays an important role in the process of early pregnancy, melatonin was given in drinking water to pregnant mice at different gestation stages. These included mice who were given melatonin 14 days prior to their successful mating (confirmed by vaginal plug) (Group A), after successful mating (Group B), and 14 days prior to and until after successful mating (Group C). Melatonin administration significantly enhanced serum as well as ovarian melatonin levels in the mice. It was observed that melatonin did not affect the natural estrous of mice. On day 0.5 of gestation (D0.5), melatonin not only elevated progesterone (P) secretion, but also upregulated expressions of StAR and Cyp11a1, the two marker genes of corpus luteum in ovaries (p < 0.05). Group A had a significantly lower estradiol (E2) secretion and a higher number of implantation sites as well as litter size than controls (p < 0.05) and also had an increased Ihh expression in endometrium of D7.5 gestation. Melatonin treatment after successful mating improved the progesterone (P) secretion at D7.5 of gestation (p < 0.05) and significantly induced leukaemia inhibitory factor (LIF) expression (p < 0.05). Our study indicates that melatonin treatment up-regulated the genes involved in pregnenolone synthesis in ovary and Ihh expression in uterine endometrium. The mechanisms of melatonin to improve embryo implantation related to their actions on promoting the development of corpus luteum before gestation and helping to specify uterine receptivity in early pregnant mice. Full article
(This article belongs to the Special Issue Melatonin and Its Analogues: Experimental and Clinical Aspects)
Figures

Open AccessArticle Neuroendocrine Differentiation in Metastatic Conventional Prostate Cancer Is Significantly Increased in Lymph Node Metastases Compared to the Primary Tumors
Int. J. Mol. Sci. 2017, 18(8), 1640; doi:10.3390/ijms18081640
Received: 27 April 2017 / Revised: 30 June 2017 / Accepted: 7 July 2017 / Published: 28 July 2017
PDF Full-text (3803 KB) | HTML Full-text | XML Full-text
Abstract
Neuroendocrine serum markers released from prostate cancers have been proposed for monitoring disease and predicting survival. However, neuroendocrine differentiation (NED) in various tissue compartments of metastatic prostate cancer is poorly described and its correlation with specific tumor features is unclear. NED was determined
[...] Read more.
Neuroendocrine serum markers released from prostate cancers have been proposed for monitoring disease and predicting survival. However, neuroendocrine differentiation (NED) in various tissue compartments of metastatic prostate cancer is poorly described and its correlation with specific tumor features is unclear. NED was determined by Chromogranin A expression on immunostains from a tissue microarray of 119 nodal positive, hormone treatment-naïve prostate cancer patients who underwent radical prostatectomy and extended lymphadenectomy. NED in the primary cancer and in the metastases was correlated with tumor features and survival. The mean percentage of NED cells increased significantly (p < 0.001) from normal prostate glands (0.4%), to primary prostate cancer (1.0%) and nodal metastases (2.6%). In primary tumors and nodal metastases, tumor areas with higher Gleason patterns tended to display a higher NED, although no significance was reached. The same was observed in patients with a larger primary tumor volume and higher total size and number of metastases. NED neither in the primary tumors nor in the metastases predicted outcome significantly. Our data suggest that (a) increasing levels of neuroendocrine serum markers in the course of prostate cancer might primarily derive from a poorly differentiated metastatic tumor component; and (b) NED in conventional hormone-naïve prostate cancers is not significantly linked to adverse tumor features. Full article
(This article belongs to the Special Issue Diagnostic, Prognostic and Predictive Biomarkers in Prostate Cancer)
Figures

Figure 1

Open AccessArticle Comparative In Vitro Controlled Release Studies on the Chronobiotic Hormone Melatonin from Cyclodextrins-Containing Matrices and Cyclodextrin: Melatonin Complexes
Int. J. Mol. Sci. 2017, 18(8), 1641; doi:10.3390/ijms18081641
Received: 29 June 2017 / Revised: 24 July 2017 / Accepted: 25 July 2017 / Published: 28 July 2017
PDF Full-text (3112 KB) | HTML Full-text | XML Full-text
Abstract
A series of hydrophilic matrix tablets was prepared and tested with respect to their ability to release the hormone melatonin in a controlled manner, in order to alleviate sleep onset and sleep maintenance dysfunctions. Besides the active ingredient, the tablets were comprised of
[...] Read more.
A series of hydrophilic matrix tablets was prepared and tested with respect to their ability to release the hormone melatonin in a controlled manner, in order to alleviate sleep onset and sleep maintenance dysfunctions. Besides the active ingredient, the tablets were comprised of combinations of the following: HPMC K 15M, low viscosity sodium alginate, microcrystalline cellulose (Avicel PH 102), magnesium stearate, and the cyclodextrins, α-CD, β-CD, γ-CD, HP-β-CD, sulfated β-CD, HP-α-CD and HP-γ-CD, and MLT (guest):CD (host) complexes of the above cyclodextrins, in 1:1 ratio. The controlled release studies were conducted in two aqueous dissolution media at pH 1.2 and 7.4. The stoichiometry of the formed complexes was examined by applying the continuous variation method (Job plot), while the stability constants were calculated by monitoring the spectrophotometric properties of free and CD-encapsulated melatonin (UV-Vis). Host-guest interactions were studied by Nuclear Magnetic Resonance (NMR) spectroscopy. The dissolution data suggest that melatonin is released faster from the MLT:CD complexes than from the rest matrix systems. This enhancement in the dissolution rate and the % release of melatonin from the complexes is due to the increased solubility of the MLT:CD complexes. Full article
(This article belongs to the Special Issue Melatonin and Its Analogues: Experimental and Clinical Aspects)
Figures

Open AccessArticle Immuno-Modulatory and Anti-Inflammatory Effects of Dihydrogracilin A, a Terpene Derived from the Marine Sponge Dendrilla membranosa
Int. J. Mol. Sci. 2017, 18(8), 1643; doi:10.3390/ijms18081643
Received: 1 May 2017 / Revised: 11 June 2017 / Accepted: 23 June 2017 / Published: 28 July 2017
PDF Full-text (4701 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We assessed the immunomodulatory and anti-inflammatory effects of 9,11-dihydrogracilin A (DHG), a molecule derived from the Antarctic marine sponge Dendrilla membranosa. We used in vitro and in vivo approaches to establish DHG properties. Human peripheral blood mononuclear cells (PBMC) and human keratinocytes
[...] Read more.
We assessed the immunomodulatory and anti-inflammatory effects of 9,11-dihydrogracilin A (DHG), a molecule derived from the Antarctic marine sponge Dendrilla membranosa. We used in vitro and in vivo approaches to establish DHG properties. Human peripheral blood mononuclear cells (PBMC) and human keratinocytes cell line (HaCaT cells) were used as in vitro system, whereas a model of murine cutaneous irritation was adopted for in vivo studies. We observed that DHG reduces dose dependently the proliferative response and viability of mitogen stimulated PBMC. In addition, DHG induces apoptosis as revealed by AnnexinV staining and downregulates the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), signal transducer and activator of transcription (STAT) and extracellular signal–regulated kinase (ERK) at late time points. These effects were accompanied by down-regulation of interleukin 6 (IL-6) production, slight decrease of IL-10 and no inhibition of tumor necrosis factor-alpha (TNF-α) secretion. To assess potential properties of DHG in epidermal inflammation we used HaCaT cells; this compound reduces cell growth, viability and migration. Finally, we adopted for the in vivo study the croton oil-induced ear dermatitis murine model of inflammation. Of note, topical use of DHG significantly decreased mouse ear edema. These results suggest that DHG exerts anti-inflammatory effects and its anti-edema activity in vivo strongly supports its potential therapeutic application in inflammatory cutaneous diseases. Full article
(This article belongs to the Special Issue Biological Activity of Natural Secondary Metabolite Products)
Figures

Open AccessCommunication Secretion of Galectin-9 as a DAMP during Dengue Virus Infection in THP-1 Cells
Int. J. Mol. Sci. 2017, 18(8), 1644; doi:10.3390/ijms18081644
Received: 28 June 2017 / Revised: 17 July 2017 / Accepted: 22 July 2017 / Published: 28 July 2017
PDF Full-text (1295 KB) | HTML Full-text | XML Full-text
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous cellular molecules released to the extracellular environment in response to stress conditions such as virus infection. Galectins are β-galactoside-binding proteins that are widely expressed in cells and tissues of the immune system, are localized in the cell
[...] Read more.
Damage-associated molecular patterns (DAMPs) are endogenous cellular molecules released to the extracellular environment in response to stress conditions such as virus infection. Galectins are β-galactoside-binding proteins that are widely expressed in cells and tissues of the immune system, are localized in the cell cytoplasm, and have roles in inflammatory responses and immune responses against infection. Elevated levels of galectin-9 (Gal-9) in natural human infections have been documented in numerous reports. To investigate the effect of dengue virus (DENV) infection on expression of endogenous Gal-9, monocytic THP-1 cells were infected with varying doses of DENV-3 (multiplicity of infection (MOI) 0.01, 0.03 and 0.1) and incubated at varying time points (Day 1, Day 2, Day 3). Results showed augmentation of Gal-9 levels in the supernatant, reduction of Gal-9 levels in the cells and decreased expression of LGALS9 mRNA, while DENV-3 mRNA copies for all three doses remained stable through time. Dengue virus induced the secretion of Gal-9 as a danger response; in turn, Gal-9 and other inflammatory factors, and stimulated effector responses may have limited further viral replication. The results in this pilot experiment add to the evidence of Gal-9 as a potential DAMP. Full article
(This article belongs to the Special Issue Molecular Mechanism of Infectious Disease)
Figures

Open AccessArticle A Simple Procedure for the Evaluation of Bone Vitality by Staining with a Tetrazolium Salt
Int. J. Mol. Sci. 2017, 18(8), 1646; doi:10.3390/ijms18081646
Received: 23 June 2017 / Revised: 25 July 2017 / Accepted: 27 July 2017 / Published: 28 July 2017
PDF Full-text (5696 KB) | HTML Full-text | XML Full-text
Abstract
Presently, no intra-operative method for a direct assessment of bone vitality exists. Therefore, we set out to test the applicability of tetrazolium-based staining on bone samples. The explanted femoral heads of 37 patients were used to obtain either cancellous bone fragments or bone
[...] Read more.
Presently, no intra-operative method for a direct assessment of bone vitality exists. Therefore, we set out to test the applicability of tetrazolium-based staining on bone samples. The explanted femoral heads of 37 patients were used to obtain either cancellous bone fragments or bone slices. Samples were stained with 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (thiazolyl blue, MTT) at different times (one to twelve hours) after explantation. Staining was quantified either spectrophotometrically after extraction of the dyes or by densitometric image analysis. TTC-staining of cancellous bone fragments and bone slices, respectively, indicated the detectability of vital cells in both types of samples in a window of up to six hours after explantation. Staining intensity at later time-points was indistinguishable from the staining of untreated samples or sodium azide treated samples, which represent dead cells. In contrast, MTT-staining of bone slices revealed intense unspecific staining, which obscured the evaluation of the vitality of the samples. The lack of a detectable increase of colour intensity in TTC-stained bone samples, which were treated more than six hours after explantation, corresponds to reduced fracture healing. The described simple procedure could provide a basis for an intraoperative decision by the orthopaedic surgeon. Full article
(This article belongs to the Special Issue Advances in Bone and Cartilage Research)
Figures

Figure 1

Open AccessArticle Targeting Apoptotic Activity Against Prostate Cancer Stem Cells
Int. J. Mol. Sci. 2017, 18(8), 1648; doi:10.3390/ijms18081648
Received: 28 June 2017 / Revised: 21 July 2017 / Accepted: 26 July 2017 / Published: 29 July 2017
PDF Full-text (3883 KB) | HTML Full-text | XML Full-text
Abstract
Numerous data suggest that an increase of cancer stem cells (CSCs) in tumor mass can be the reason for failure of conventional therapies because of their resistance. CD44+/CD24− cells are a putative cancer stem cells subpopulation in prostate cancer. TRAIL (tumor necrosis factor-related
[...] Read more.
Numerous data suggest that an increase of cancer stem cells (CSCs) in tumor mass can be the reason for failure of conventional therapies because of their resistance. CD44+/CD24− cells are a putative cancer stem cells subpopulation in prostate cancer. TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is an activator of apoptosis in tumor cells. However, some tumors are TRAIL-resistant. Cancer cells can be re-sensitized to TRAIL induced apoptosis by a combination of TRAIL and taxanes. The aim of this work was to analyze the enhancement of the anticancer effect of TRAIL by paclitaxel, cabazitaxel and docetaxel in the whole population of PC3 and DU145 prostate cancer cells, but also in CD44+/CD24− prostate cancer stem cells. We examined the apoptotic effect of TRAIL and taxanes using flow cytometry and Annexin-V-PE staining. The co-treatment with taxanes and TRAIL enhanced significantly the apoptosis in CD44+/CD24− cells only in PC3 cell line but not in DU145 cells. We discovered also that taxanes can increase the expression of death receptor TRAIL-R2 in PC3 prostate cancer cells. The results of our study show that treatment with paclitaxel, cabazitaxel and docetaxel is able to enhance the apoptosis induced by TRAIL even in prostate cancer stem cells. Full article
(This article belongs to the Special Issue Cancer Stem Cells)
Figures

Open AccessArticle Stonin 2 Overexpression is Correlated with Unfavorable Prognosis and Tumor Invasion in Epithelial Ovarian Cancer
Int. J. Mol. Sci. 2017, 18(8), 1653; doi:10.3390/ijms18081653
Received: 21 June 2017 / Revised: 19 July 2017 / Accepted: 23 July 2017 / Published: 29 July 2017
PDF Full-text (1602 KB) | HTML Full-text | XML Full-text
Abstract
Stonin 2 (STON2), which functions in adjusting endocytotic complexes, is probably involved in the monitoring of the internalization of dopamine D2 receptors which have an inhibitory action of dopamine on tumor progression. However, its clinical significance in tumor progression and prognosis
[...] Read more.
Stonin 2 (STON2), which functions in adjusting endocytotic complexes, is probably involved in the monitoring of the internalization of dopamine D2 receptors which have an inhibitory action of dopamine on tumor progression. However, its clinical significance in tumor progression and prognosis remains unclear. We explored the association between STON2 and the clinicopathological characteristics of epithelial ovarian cancer (EOC). The STON2 levels in ovarian cancer and normal cell lines and tissues were detected by real-time PCR and Western blot analyses. STON2 protein expression was also detected by an immunohistochemical analysis. The clinical significance of STON2 expression in ovarian cancer was statistically analyzed. STON2 significantly increased in the ovarian cancer cell lines and tissues compared to the normal ones. In the 89 EOC samples tested, STON2 expression was significantly correlated with intraperitoneal metastasis, intestinal metastasis, intraperitoneal recurrence, ascites containing tumor cells, and CA153 level. Moreover, patients with STON2 protein overexpression were more likely to exhibit platinum resistance and to have undergone neoadjuvant chemotherapy. Patients with high STON2 protein expression had a tendency to have a shorter overall survival and a poor prognosis. A multivariate analysis showed that STON2 was an independent prognostic predictor for EOC patients. In conclusion, STON2 plays an important role in the progression and prognosis of ovarian carcinoma, especially in platinum resistance, intraperitoneal metastasis, and recurrence. STON2 can be a novel antitumor drug target and biomarker which predicts an unfavorable prognosis for EOC patients. Full article
Figures

Open AccessArticle A Different Microbiome Gene Repertoire in the Airways of Cystic Fibrosis Patients with Severe Lung Disease
Int. J. Mol. Sci. 2017, 18(8), 1654; doi:10.3390/ijms18081654
Received: 5 July 2017 / Revised: 24 July 2017 / Accepted: 25 July 2017 / Published: 29 July 2017
PDF Full-text (1905 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In recent years, next-generation sequencing (NGS) was employed to decipher the structure and composition of the microbiota of the airways in cystic fibrosis (CF) patients. However, little is still known about the overall gene functions harbored by the resident microbial populations and which
[...] Read more.
In recent years, next-generation sequencing (NGS) was employed to decipher the structure and composition of the microbiota of the airways in cystic fibrosis (CF) patients. However, little is still known about the overall gene functions harbored by the resident microbial populations and which specific genes are associated with various stages of CF lung disease. In the present study, we aimed to identify the microbial gene repertoire of CF microbiota in twelve patients with severe and normal/mild lung disease by performing sputum shotgun metagenome sequencing. The abundance of metabolic pathways encoded by microbes inhabiting CF airways was reconstructed from the metagenome. We identified a set of metabolic pathways differently distributed in patients with different pulmonary function; namely, pathways related to bacterial chemotaxis and flagellar assembly, as well as genes encoding efflux-mediated antibiotic resistance mechanisms and virulence-related genes. The results indicated that the microbiome of CF patients with low pulmonary function is enriched in virulence-related genes and in genes encoding efflux-mediated antibiotic resistance mechanisms. Overall, the microbiome of severely affected adults with CF seems to encode different mechanisms for the facilitation of microbial colonization and persistence in the lung, consistent with the characteristics of multidrug-resistant microbial communities that are commonly observed in patients with severe lung disease. Full article
(This article belongs to the Special Issue Lung Diseases: Chronic Respiratory Infections)
Figures

Open AccessArticle Tumor-Stroma Crosstalk in Bone Tissue: The Osteoclastogenic Potential of a Breast Cancer Cell Line in a Co-Culture System and the Role of EGFR Inhibition
Int. J. Mol. Sci. 2017, 18(8), 1655; doi:10.3390/ijms18081655
Received: 29 June 2017 / Revised: 21 July 2017 / Accepted: 25 July 2017 / Published: 29 July 2017
PDF Full-text (3228 KB) | HTML Full-text | XML Full-text
Abstract
Although bone metastases represent a major challenge in the natural history of breast cancer (BC), the complex interactions involved have hindered the development of robust in vitro models. The aim of this work is the development of a preclinical model of cancer and
[...] Read more.
Although bone metastases represent a major challenge in the natural history of breast cancer (BC), the complex interactions involved have hindered the development of robust in vitro models. The aim of this work is the development of a preclinical model of cancer and bone stromal cells to mimic the bone microenvironment. We studied the effects on osteoclastogenesis of BC cells and Mesenchymal stem cells (MSC) cultured alone or in combination. We also analyzed: (a) whether the blockade of the Epithelial Growth Factor Receptor (EGFR) pathway modified their influence on monocytes towards differentiation, and (b) the efficacy of bone-targeted therapy on osteoclasts. We evaluated the osteoclastogenesis modulation of human peripheral blood monocytes (PBMC) indirectly induced by the conditioned medium (CM) of the human BC cell line SCP2, cultured singly or with MSC. Osteoclastogenesis was evaluated by TRAP analysis. The effect of the EGFR blockade was assessed by treating the cells with gefitinib, and analyzed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Western Blot (WB). We observed that SCP2 co-cultured with MSC increased the differentiation of PBMC. This effect was underpinned upon pre-treatment of the co-culture with gefitinib. Co-culture of SCP2 with MSC increased the expression of both the bone-related marker Receptor Activator of Nuclear Factor κB (RANK) and EGFR in BC cells. These upregulations were not affected by the EGFR blockade. The effects of the CM obtained by the cells treated with gefitinib in combination with the treatment of the preosteoclasts with the bone-targeted agents and everolimus enhanced the inhibition of the osteoclastogenesis. Finally, we developed a fully human co-culture system of BC cells and bone progenitor cells. We observed that the interaction of MSC with cancer cells induced in the latter molecular changes and a higher power of inducing osteoclastogenesis. We found that blocking EGFR signaling could be an efficacious strategy for breaking the interactions between cancer and bone cells in order to inhibit bone metastasis. Full article
(This article belongs to the Special Issue Chemical and Molecular Approach to Tumor Metastases)
Figures

Open AccessArticle Nrf2-Knockout Protects from Intestinal Injuries in C57BL/6J Mice Following Abdominal Irradiation with γ Rays
Int. J. Mol. Sci. 2017, 18(8), 1656; doi:10.3390/ijms18081656
Received: 7 July 2017 / Revised: 23 July 2017 / Accepted: 27 July 2017 / Published: 31 July 2017
PDF Full-text (45330 KB) | HTML Full-text | XML Full-text
Abstract
Radiation-induced intestinal injuries (RIII) commonly occur in patients who suffer from pelvic or abdominal cancer. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator of antioxidant, and the radioprotective role of Nrf2 is found in bone marrow, lung, and intestine, etc.
[...] Read more.
Radiation-induced intestinal injuries (RIII) commonly occur in patients who suffer from pelvic or abdominal cancer. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator of antioxidant, and the radioprotective role of Nrf2 is found in bone marrow, lung, and intestine, etc. Here, we investigated the effect of Nrf2 knockout on radiation-induced intestinal injuries using Nrf2 knockout (Nrf2−/−) mice and wild-type (Nrf2+/+) C57BL/6J mice following 13 Gy abdominal irradiation (ABI). It was found that Nrf2 knockout promoted the survival of irradiated mice, protected the crypt-villus structure of the small intestine, and elevated peripheral blood lymphocyte count and thymus coefficients. The DNA damage of peripheral blood lymphocytes and the apoptosis of intestinal epithelial cells (IECs) of irradiated Nrf2−/− mice were decreased. Furthermore, compared with that of Nrf2+/+ mice, Nrf2 knockout increased the number of Lgr5+ intestinal stem cells (ISCs) and their daughter cells including Ki67+ transient amplifying cells, Villin+ enterocytes, and lysozyme+ Paneth cells. Nuclear factor-κB (NF-κB) was accumulated in the crypt base nuclei of the small intestine, and the mRNA expression of NF-κB target genes Bcl-2, uPA, and Xiap of the small intestine from irradiated Nrf2−/− mice were increased. Collectively, Nrf2 knockout has the protective effect on small intestine damage following abdominal irradiation by prompting the proliferation and differentiation of Lgr5+ intestinal stem cells and activation of NF-κB. Full article
(This article belongs to the Special Issue Nrf2 in Redox Signaling: A Double Edged Sword)
Figures

Open AccessArticle Chemical Constituents from Hericium erinaceus Promote Neuronal Survival and Potentiate Neurite Outgrowth via the TrkA/Erk1/2 Pathway
Int. J. Mol. Sci. 2017, 18(8), 1659; doi:10.3390/ijms18081659
Received: 29 June 2017 / Revised: 24 July 2017 / Accepted: 25 July 2017 / Published: 30 July 2017
PDF Full-text (7746 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Hericium erinaceus is a culinary-medicinal mushroom used traditionally in Eastern Asia to improve memory. In this work, we investigated the neuroprotective and neuritogenic effects of the secondary metabolites isolated from the MeOH extract of cultured mycelium of H. erinaceus and the primary mechanisms
[...] Read more.
Hericium erinaceus is a culinary-medicinal mushroom used traditionally in Eastern Asia to improve memory. In this work, we investigated the neuroprotective and neuritogenic effects of the secondary metabolites isolated from the MeOH extract of cultured mycelium of H. erinaceus and the primary mechanisms involved. One new dihydropyridine compound (6) and one new natural product (2) together with five known compounds (1,35,7) were obtained and their structures were elucidated by spectroscopic analysis, including 2D NMR and HRMS. The cell-based screening for bioactivity showed that 4-chloro-3,5-dimethoxybenzoic methyl ester (1) and a cyathane diterpenoid, erincine A (3), not only potentiated NGF-induced neurite outgrowth but also protected neuronally-differentiated cells against deprivation of NGF in PC12 pheochromocytoma cells. Additionally, compound 3 induced neuritogenesis in primary rat cortex neurons. Furthermore, our results revealed that TrkA-mediated and Erk1/2-dependant pathways could be involved in 1 and 3-promoted NGF-induced neurite outgrowth in PC12 cells. Full article
Figures

Open AccessArticle Functional and Promoter Analysis of ChiIV3, a Chitinase of Pepper Plant, in Response to Phytophthora capsici Infection
Int. J. Mol. Sci. 2017, 18(8), 1661; doi:10.3390/ijms18081661
Received: 19 June 2017 / Revised: 28 July 2017 / Accepted: 30 July 2017 / Published: 1 August 2017
PDF Full-text (2863 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Despite the involvement of many members of the chitinase family in plant immunity, the precise functions of the majority of the members remain poorly understood. Herein, the gene ChiIV3 in Capsicum annuum encoding a chitinase protein containing a chitin binding domain and targeting
[...] Read more.
Despite the involvement of many members of the chitinase family in plant immunity, the precise functions of the majority of the members remain poorly understood. Herein, the gene ChiIV3 in Capsicum annuum encoding a chitinase protein containing a chitin binding domain and targeting to the plasma membrane was found to be induced by Phytophthora capsici inoculation (PCI) and applied chitin treatment. Besides its direct inhibitory effect on growth of Phytophthora capsici (P. capsici), ChiIV3 was also found by virus-induced gene silencing (VIGS) and transient overexpression (TOE) in pepper plants to act as a positive regulator of plant cell death and in triggering defense signaling and upregulation of PR (pathogenesis related) genes against PCI. A 5′ deletion assay revealed that pChiIV3−712 to −459 bp was found to be sufficient for ChiIV3’ response to PCI. Furthermore, a mutation assay indicated that W-box−466 to −461 bp in pChiIV3−712 to −459 bp was noted to be the PCI-responsible element. These results collectively suggest that ChiIV3 acts as a likely antifungal protein and as a receptor for unidentified chitin in planta to trigger cell death and defense signaling against PCI. Full article
(This article belongs to the Section Molecular Botany)
Figures

Open AccessArticle Elevated Soluble Urokinase Plasminogen Activator Receptor and Proenkephalin Serum Levels Predict the Development of Acute Kidney Injury after Cardiac Surgery
Int. J. Mol. Sci. 2017, 18(8), 1662; doi:10.3390/ijms18081662
Received: 29 June 2017 / Revised: 27 July 2017 / Accepted: 27 July 2017 / Published: 31 July 2017
PDF Full-text (1338 KB) | HTML Full-text | XML Full-text
Abstract
Acute kidney injury (AKI) develops in up to 40% of patients after cardiac surgery. The soluble urokinase plasminogen activator receptor (suPAR) has been identified as a biomarker for incident chronic kidney disease (CKD). Proenkephalin (proENK) also has been shown to be a biomarker
[...] Read more.
Acute kidney injury (AKI) develops in up to 40% of patients after cardiac surgery. The soluble urokinase plasminogen activator receptor (suPAR) has been identified as a biomarker for incident chronic kidney disease (CKD). Proenkephalin (proENK) also has been shown to be a biomarker for renal dysfunction. We hypothesized that pre-surgery suPAR and proENK levels might predict AKI in patients undergoing cardiac surgery. Consecutive patients (n = 107) undergoing elective cardiac surgery were studied prospectively. Clinical data, laboratory parameters, suPAR and proENK serum levels were assessed before operation, after operation and days one and four post-operatively. A total of 21 (19.6%) patients developed AKI within the first four days after elective surgery. Serum levels of suPAR and proENK, but not of creatinine, were significantly higher before surgery in these patients compared to those patients without AKI. This difference remained significant for suPAR, if patients with or without AKI were matched for risk factors (hypertension, diabetes, CKD). If cardiac surgery patients with pre-existing CKD (n = 10) were excluded, only pre-operative suPAR but not proENK serum levels remained significantly elevated in patients with subsequent AKI. Thus, our findings indicate that suPAR may be a predictive biomarker for AKI in the context of cardiac surgery, even in patients without underlying CKD. Full article
(This article belongs to the Special Issue Biomarkers in Drug-Induced Organ Injury)
Figures

Figure 1a

Open AccessArticle Beneficial Effects of Galectin-3 Blockade in Vascular and Aortic Valve Alterations in an Experimental Pressure Overload Model
Int. J. Mol. Sci. 2017, 18(8), 1664; doi:10.3390/ijms18081664
Received: 14 June 2017 / Revised: 28 July 2017 / Accepted: 28 July 2017 / Published: 31 July 2017
PDF Full-text (11118 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Galectin-3 (Gal-3) is involved in cardiovascular fibrosis and aortic valve (AV) calcification. We hypothesized that Gal-3 pharmacological inhibition with modified citrus pectin (MCP) could reduce aortic and AV remodeling in normotensive rats with pressure overload (PO). Six weeks after aortic constriction, vascular Gal-3
[...] Read more.
Galectin-3 (Gal-3) is involved in cardiovascular fibrosis and aortic valve (AV) calcification. We hypothesized that Gal-3 pharmacological inhibition with modified citrus pectin (MCP) could reduce aortic and AV remodeling in normotensive rats with pressure overload (PO). Six weeks after aortic constriction, vascular Gal-3 expression was up-regulated in male Wistar rats. Gal-3 overexpression was accompanied by an increase in the aortic media layer thickness, enhanced total collagen, and augmented expression of fibrotic mediators. Further, vascular inflammatory markers as well as inflammatory cells content were greater in aorta from PO rats. MCP treatment (100 mg/kg/day) prevented the increase in Gal-3, media thickness, fibrosis, and inflammation in the aorta of PO rats. Gal-3 levels were higher in AVs from PO rats. This paralleled enhanced AV fibrosis, inflammation, as well as greater expression of calcification markers. MCP treatment prevented the increase in Gal-3 as well as fibrosis, inflammation, and calcification in AVs. Overall, Gal-3 is overexpressed in aorta and AVs from PO rats. Gal-3 pharmacological inhibition blocks aortic and AV remodeling in experimental PO. Gal-3 could be a new therapeutic approach to delay the progression and the development of aortic remodeling and AV calcification in PO. Full article
Figures

Open AccessArticle Variability of Creatine Metabolism Genes in Children with Autism Spectrum Disorder
Int. J. Mol. Sci. 2017, 18(8), 1665; doi:10.3390/ijms18081665
Received: 5 May 2017 / Revised: 19 July 2017 / Accepted: 25 July 2017 / Published: 31 July 2017
PDF Full-text (2713 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Creatine deficiency syndrome (CDS) comprises three separate enzyme deficiencies with overlapping clinical presentations: arginine:glycine amidinotransferase (GATM gene, glycine amidinotransferase), guanidinoacetate methyltransferase (GAMT gene), and creatine transporter deficiency (SLC6A8 gene, solute carrier family 6 member 8). CDS presents with developmental delays/regression,
[...] Read more.
Creatine deficiency syndrome (CDS) comprises three separate enzyme deficiencies with overlapping clinical presentations: arginine:glycine amidinotransferase (GATM gene, glycine amidinotransferase), guanidinoacetate methyltransferase (GAMT gene), and creatine transporter deficiency (SLC6A8 gene, solute carrier family 6 member 8). CDS presents with developmental delays/regression, intellectual disability, speech and language impairment, autistic behaviour, epileptic seizures, treatment-refractory epilepsy, and extrapyramidal movement disorders; symptoms that are also evident in children with autism. The objective of the study was to test the hypothesis that genetic variability in creatine metabolism genes is associated with autism. We sequenced GATM, GAMT and SLC6A8 genes in 166 patients with autism (coding sequence, introns and adjacent untranslated regions). A total of 29, 16 and 25 variants were identified in each gene, respectively. Four variants were novel in GATM, and 5 in SLC6A8 (not present in the 1000 Genomes, Exome Sequencing Project (ESP) or Exome Aggregation Consortium (ExAC) databases). A single variant in each gene was identified as non-synonymous, and computationally predicted to be potentially damaging. Nine variants in GATM were shown to have a lower minor allele frequency (MAF) in the autism population than in the 1000 Genomes database, specifically in the East Asian population (Fisher’s exact test). Two variants also had lower MAFs in the European population. In summary, there were no apparent associations of variants in GAMT and SLC6A8 genes with autism. The data implying there could be a lower association of some specific GATM gene variants with autism is an observation that would need to be corroborated in a larger group of autism patients, and with sub-populations of Asian ethnicities. Overall, our findings suggest that the genetic variability of creatine synthesis/transport is unlikely to play a part in the pathogenesis of autism spectrum disorder (ASD) in children. Full article
Figures

Figure 1

Open AccessArticle Toll-Like Receptor-4 Inhibitor TAK-242 Attenuates Motor Dysfunction and Spinal Cord Pathology in an Amyotrophic Lateral Sclerosis Mouse Model
Int. J. Mol. Sci. 2017, 18(8), 1666; doi:10.3390/ijms18081666
Received: 13 June 2017 / Revised: 21 July 2017 / Accepted: 23 July 2017 / Published: 1 August 2017
PDF Full-text (3258 KB) | HTML Full-text | XML Full-text
Abstract
Neuroinflammation contributes to amyotrophic lateral sclerosis (ALS) progression. TLR4, a transmembrane protein that plays a central role in activation of the innate immune system, has been shown to induce microglial activation in ALS models. TLR4 is up-regulated in the spinal cords of hSOD1
[...] Read more.
Neuroinflammation contributes to amyotrophic lateral sclerosis (ALS) progression. TLR4, a transmembrane protein that plays a central role in activation of the innate immune system, has been shown to induce microglial activation in ALS models. TLR4 is up-regulated in the spinal cords of hSOD1G93A mice. We aimed to examine the effects of specific TLR4 inhibition on disease progression and survival in the hSOD1G93A mouse model of ALS. Immunologic effect of TLR4 inhibition in vitro was measured by the effect of TAK-242 treatment on LPS-induced splenocytes proliferation. hSOD1G93A transgenic mice were treated with TAK-242, a selective TLR4 inhibitor, or vehicle. Survival, body weight, and motor behavior were monitored. To evaluate in vivo immunologic modifications associated with TAK-242 treatment, we measured serum IL-1β in the plasma, as well as IL-1β and TNF-α mRNAs in the spinal cord in wild-type mice and in TAK-242-treated and vehicle-treated early symptomatic hSOD1G93A mice. Immunohistochemical analysis of motor neurons, astrocytes, and microglial reactivity in the spinal cords were performed on symptomatic (100 days old) TAK-242-treated and vehicle-treated hSOD1G93A mice. In vitro, splenocytes taken from 100 days old hSOD1G93A mice showed significantly increased proliferation when exposed to LPS (p = 0.0002), a phenomenon that was reduced by TAK-242 (p = 0.0179). TAK-242 treatment did not attenuate body weight loss or significantly affect survival. However, TAK-242-treated hSOD1G93A mice showed temporary clinical delay in disease progression evident in the ladder test and hindlimb reflex measurements. Plasma IL-1β levels were significantly reduced in TAK-242-treated compared to vehicle-treated hSOD1G93A mice (p = 0.0023). TAK-242 treatment reduced spinal cord astrogliosis and microglial activation and significantly attenuated spinal cord motor neuron loss at early disease stage (p = 0.0259). Compared to wild-type animals, both IL-1β and TNF-α mRNAs were significantly upregulated in the spinal cords of hSOD1G93A mice. Spinal cord analysis in TAK-242-treated hSOD1G93A mice revealed significant attenuation of TNF-α mRNA (p = 0.0431), but no change in IL-1β mRNA. TLR4 inhibition delayed disease progression, attenuated spinal cord astroglial and microglial reaction, and reduced spinal motor neuron loss in the ALS hSOD1G93A mouse model. However, this effect did not result in increased survival. To our knowledge, this is the first report on TAK-242 treatment in a neurodegenerative disease model. Further studies are warranted to assess TLR4 as a therapeutic target in ALS. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2017)
Figures

Open AccessArticle Tricetin Induces Apoptosis of Human Leukemic HL-60 Cells through a Reactive Oxygen Species-Mediated c-Jun N-Terminal Kinase Activation Pathway
Int. J. Mol. Sci. 2017, 18(8), 1667; doi:10.3390/ijms18081667
Received: 24 May 2017 / Revised: 20 July 2017 / Accepted: 25 July 2017 / Published: 31 July 2017
PDF Full-text (3131 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Tricetin is a dietary flavonoid with cytostatic properties and antimetastatic activities in various solid tumors. The anticancer effect of tricetin in nonsolid tumors remains unclear. Herein, the molecular mechanisms by which tricetin exerts its anticancer effects on acute myeloid leukemia (AML) cells were
[...] Read more.
Tricetin is a dietary flavonoid with cytostatic properties and antimetastatic activities in various solid tumors. The anticancer effect of tricetin in nonsolid tumors remains unclear. Herein, the molecular mechanisms by which tricetin exerts its anticancer effects on acute myeloid leukemia (AML) cells were investigated. Results showed that tricetin inhibited cell viability in various types of AML cell lines. Tricetin induced morphological features of apoptosis such as chromatin condensation and phosphatidylserine (PS) externalization, and significantly activated proapoptotic signaling including caspase-8, -9, and -3 activation and poly(ADP-ribose) polymerase (PARP) cleavage in HL-60 AML cells. Of note, tricetin-induced cell growth inhibition was dramatically reversed by a pan caspase and caspase-8- and -9-specific inhibitors, suggesting that this compound mainly acts through a caspase-dependent pathway. Moreover, treatment of HL-60 cells with tricetin induced sustained activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), and inhibition of ERK and JNK by their specific inhibitors respectively promoted and abolished tricetin-induced cell apoptosis. Dichlorofluorescein (DCF) staining showed that intracellular reactive oxygen species (ROS) levels were higher in tricetin-treated HL-60 cells compared to the control group. Moreover, an ROS scavenger, N-acetylcysteine (NAC), reversed tricetin-induced JNK activation and subsequent cell apoptosis. In conclusion, our results indicated that tricetin induced cell death of leukemic HL-60 cells through induction of intracellular oxidative stress following activation of a JNK-mediated apoptosis pathway. A combination of tricetin and an ERK inhibitor may be a better strategy to enhance the anticancer activities of tricetin in AML. Full article
(This article belongs to the Special Issue Alterations to Signalling Pathways in Cancer Cells)
Figures

Open AccessArticle Variation within Variation: Comparison of 24-h Rhythm in Rodent Infarct Size between Ischemia Reperfusion and Permanent Ligation
Int. J. Mol. Sci. 2017, 18(8), 1670; doi:10.3390/ijms18081670
Received: 4 July 2017 / Revised: 25 July 2017 / Accepted: 27 July 2017 / Published: 1 August 2017
PDF Full-text (2532 KB) | HTML Full-text | XML Full-text
Abstract
The detrimental effects of myocardial infarction in humans and rodents have a 24-h rhythm. In some human cohorts however, rhythmicity was absent, while the time of maximum damage differs between cohorts. We hypothesized that the type of damage influences the 24-h rhythm in
[...] Read more.
The detrimental effects of myocardial infarction in humans and rodents have a 24-h rhythm. In some human cohorts however, rhythmicity was absent, while the time of maximum damage differs between cohorts. We hypothesized that the type of damage influences the 24-h rhythm in infarct size. Myocardial infarction was induced in 12-week-old C57BL/six mice at four different time-points during the day using either permanent ligation (PL) or 30-min of ischemia followed by reperfusion (IR), with a control group wherein no ligation was applied. Infarct size was measured by echocardiography and histology at a 1-month follow-up. Rhythmicity in infarct size was present in the PL group at the functional and histological level, with maximal damage occurring when the infarct was induced at noon. In the IR group, no circadian rhythm was found. The time of the coronary artery ligation determines the outcome of myocardial infarction. Our data showed that in rodents, the presence of circadian rhythmicity and time of peak infarct size varies between experimental setups. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Circadian Rhythms)
Figures

Figure 1

Open AccessArticle The Effects of Selective Hematopoietic Expression of Human IL-37 on Systemic Inflammation and Atherosclerosis in LDLr-Deficient Mice
Int. J. Mol. Sci. 2017, 18(8), 1672; doi:10.3390/ijms18081672
Received: 29 June 2017 / Revised: 21 July 2017 / Accepted: 28 July 2017 / Published: 9 August 2017
PDF Full-text (1660 KB) | HTML Full-text | XML Full-text
Abstract
The human cytokine interleukin (IL)-37 has potent anti-inflammatory capacities, and hematopoietic cell-specific transgenic overexpression of IL-37 in mice protects against septic shock and colitis. In the present study we investigated the effect of hematopoietic expression of IL-37 on atherosclerosis development under low-grade inflammatory
[...] Read more.
The human cytokine interleukin (IL)-37 has potent anti-inflammatory capacities, and hematopoietic cell-specific transgenic overexpression of IL-37 in mice protects against septic shock and colitis. In the present study we investigated the effect of hematopoietic expression of IL-37 on atherosclerosis development under low-grade inflammatory conditions. Low-density lipoprotein receptor (LDLr)-deficient mice were lethally irradiated and transplanted with bone marrow from IL-37-transgenic or control wild-type mice and fed a Western-type diet (WTD; 1% cholesterol) for eight weeks. Metabolic and inflammatory parameters were monitored and atherosclerosis was assessed in the aortic valve area. Hematopoietic IL-37 expression did not influence body weight, food intake and plasma cholesterol levels during the study. Plasma soluble E-selectin levels were increased with WTD-feeding as compared to chow-feeding, but were not influenced by IL-37 expression. IL-37 expression reduced the inflammatory state as indicated by reduced white blood cell counts and by reduced basal and lipopolysaccharide-induced cytokine response by peritoneal macrophages ex vivo. IL-37 expression did not influence the atherosclerotic lesion area. Lesion composition was marginally affected. Smooth muscle cell content was decreased, but macrophage and collagen content were not different. We conclude that under low-grade inflammatory conditions, hematopoietic IL-37 expression reduces the inflammatory state, but does not influence atherosclerosis development in hyperlipidemic LDLr-deficient mice. Full article
(This article belongs to the Special Issue Natural Anti-Inflammatory Agents)
Figures

Open AccessArticle Strategies towards Improved Feed Efficiency in Pigs Comprise Molecular Shifts in Hepatic Lipid and Carbohydrate Metabolism
Int. J. Mol. Sci. 2017, 18(8), 1674; doi:10.3390/ijms18081674
Received: 14 June 2017 / Revised: 28 July 2017 / Accepted: 28 July 2017 / Published: 1 August 2017
PDF Full-text (274 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Due to the central role of liver tissue in partitioning and metabolizing of nutrients, molecular liver-specific alterations are of considerable interest to characterize an efficient conversion and usage of feed in livestock. To deduce tissue-specific and systemic effects on nutrient metabolism and feed
[...] Read more.
Due to the central role of liver tissue in partitioning and metabolizing of nutrients, molecular liver-specific alterations are of considerable interest to characterize an efficient conversion and usage of feed in livestock. To deduce tissue-specific and systemic effects on nutrient metabolism and feed efficiency (FE) twenty-four animals with extreme phenotypes regarding residual feed intake (RFI) were analyzed. Transcriptome and fatty acid profiles of liver tissue were complemented with measurements on blood parameters and thyroid hormone levels. Based on 803 differentially-abundant probe sets between low- and high-FE animals, canonical pathways like integrin signaling and lipid and carbohydrate metabolism, were shown to be affected. Molecular alterations of lipid metabolism show a pattern of a reduced hepatic usage of fatty acids in high-FE animals. Complementary analyses at the systemic level exclusively pointed to increased circulating triglycerides which were, however, accompanied by considerably lower concentrations of saturated and polyunsaturated fatty acids in the liver of high-FE pigs. These results are in accordance with altered muscle-to-fat ratios usually ascribed to FE animals. It is concluded that strategies to improve FE might favor a metabolic shift from energy storage towards energy utilization and mobilization. Full article
(This article belongs to the Special Issue Exploring the Genotype–Phenotype Map to Explain Complex Traits)
Figures

Open AccessArticle Acceleration Mechanisms of Skin Wound Healing by Autologous Micrograft in Mice
Int. J. Mol. Sci. 2017, 18(8), 1675; doi:10.3390/ijms18081675
Received: 19 July 2017 / Revised: 31 July 2017 / Accepted: 31 July 2017 / Published: 2 August 2017
PDF Full-text (8937 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A micrograft technique, which minces tissue into micro-fragments >50 μm, has been recently developed. However, its pathophysiological mechanisms in wound healing are unclear yet. We thus performed a wound healing study using normal mice. A humanized mouse model of a skin wound with
[...] Read more.
A micrograft technique, which minces tissue into micro-fragments >50 μm, has been recently developed. However, its pathophysiological mechanisms in wound healing are unclear yet. We thus performed a wound healing study using normal mice. A humanized mouse model of a skin wound with a splint was used. After total skin excision, tissue micro-fragments obtained by the Rigenera protocol were infused onto the wounds. In the cell tracing study, GFP-expressing green mice and SCID mice were used. Collagen stains including Picrosirius red (PSR) and immunohistological stains for α-smooth muscle actin (αSMA), CD31, transforming growth factor-β1 (TGF-β1) and neutrophils were evaluated for granulation tissue development. GFP-positive cells remained in granulation tissue seven days after infusion, but vanished after 13 days. Following the infusion of the tissue micrograft solution onto the wound, TGF-β1 expression was transiently upregulated in granulation tissue in the early phase. Subsequently, αSMA-expressing myofibroblasts increased in number in thickened granulation tissue with acceleration of neovascularization and collagen matrix maturation. On such granulation tissue, regenerative epithelial healing progressed, resulting in wound area reduction. Alternative alteration after the micrograft may have increased αSMA-expressing myofibroblasts in granulation tissue, which may act on collagen accumulation, neovascularization and wound contraction. All of these changes are favorable for epithelial regeneration on wound. Full article
Figures

Open AccessArticle Modeling the Colchicum autumnale Tubulin and a Comparison of Its Interaction with Colchicine to Human Tubulin
Int. J. Mol. Sci. 2017, 18(8), 1676; doi:10.3390/ijms18081676
Received: 31 May 2017 / Revised: 27 July 2017 / Accepted: 28 July 2017 / Published: 2 August 2017
PDF Full-text (4101 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Tubulin is the target for many small-molecule natural compounds, which alter microtubules dynamics, and lead to cell cycle arrest and apoptosis. One of these compounds is colchicine, a plant alkaloid produced by Colchicum autumnale. While C. autumnale produces a potent cytotoxin, colchicine,
[...] Read more.
Tubulin is the target for many small-molecule natural compounds, which alter microtubules dynamics, and lead to cell cycle arrest and apoptosis. One of these compounds is colchicine, a plant alkaloid produced by Colchicum autumnale. While C. autumnale produces a potent cytotoxin, colchicine, and expresses its target protein, it is immune to colchicine’s cytotoxic action and the mechanism of this resistance is hitherto unknown. In the present paper, the molecular mechanisms responsible for colchicine resistance in C. autumnale are investigated and compared to human tubulin. To this end, homology models for C. autumnale α-β tubulin heterodimer are created and molecular dynamics (MD) simulations together with molecular mechanics Poisson–Boltzmann calculations (MM/PBSA) are performed to determine colchicine’s binding affinity for tubulin. Using our molecular approach, it is shown that the colchicine-binding site in C. autumnale tubulin contains a small number of amino acid substitutions compared to human tubulin. However, these substitutions induce significant reduction in the binding affinity for tubulin, and subsequently fewer conformational changes in its structure result. It is suggested that such small conformational changes are insufficient to profoundly disrupt microtubule dynamics, which explains the high resistance to colchicine by C. autumnale. Full article
(This article belongs to the Special Issue Microtubule-Targeting Agents)
Figures

Open AccessCommunication Intrapancreatic Parenchymal Injection of Cells as a Useful Tool for Allowing a Small Number of Proliferative Cells to Grow In Vivo
Int. J. Mol. Sci. 2017, 18(8), 1678; doi:10.3390/ijms18081678
Received: 28 June 2017 / Revised: 27 July 2017 / Accepted: 31 July 2017 / Published: 2 August 2017
PDF Full-text (5297 KB) | HTML Full-text | XML Full-text
Abstract
In vivo inoculation of cells such as tumor cells and induced pluripotent stem (iPS)/embryonic stem (ES) cells into immunocompromised mice has been considered as a powerful technique to evaluate their potential to proliferate or differentiate into various cell types originating from three germ
[...] Read more.
In vivo inoculation of cells such as tumor cells and induced pluripotent stem (iPS)/embryonic stem (ES) cells into immunocompromised mice has been considered as a powerful technique to evaluate their potential to proliferate or differentiate into various cell types originating from three germ cell layers. Subcutaneous grafting and grafting under the kidney capsule have been widely used for this purpose, but there are some demerits such as the requirement of a large number of tumor cells for inoculation and frequent failure of tumorigenesis. Therefore, grafting into other sites has been explored, including intratesticular or intramuscular grafting as well as grafting into the cochleae, liver, or salivary glands. In this study, we found that intrapancreatic parenchymal injection of cells is useful for allowing a small number of cells (~15 × 103 cells or ~30 cell clumps μL−1·site−1) to proliferate and sometimes differentiate into various types of cells. It requires only surgical exposure of the pancreas over the dorsal skin and subsequent injection of cells towards the pancreatic parenchyma under dissecting microscope-based observation using a mouthpiece-controlled glass micropipette. We now name this technology “intrapancreatic parenchymal cell transplantation (IPPCT)”, which will be useful, especially when only a small number of cells or colonies are available. Full article
(This article belongs to the Special Issue Stem Cell Research)
Figures

Open AccessArticle Various Mechanisms Involve the Nuclear Factor (Erythroid-Derived 2)-Like (NRF2) to Achieve Cytoprotection in Long-Term Cisplatin-Treated Urothelial Carcinoma Cell Lines
Int. J. Mol. Sci. 2017, 18(8), 1680; doi:10.3390/ijms18081680
Received: 30 June 2017 / Revised: 21 July 2017 / Accepted: 27 July 2017 / Published: 2 August 2017
PDF Full-text (3421 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Therapeutic efficacy of cisplatin-based chemotherapy for advanced-stage urothelial carcinoma (UC) is limited by drug resistance. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) pathway is a major regulator of cytoprotective responses. We investigated its involvement in cisplatin resistance in long-term cisplatin treated UC cell
[...] Read more.
Therapeutic efficacy of cisplatin-based chemotherapy for advanced-stage urothelial carcinoma (UC) is limited by drug resistance. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) pathway is a major regulator of cytoprotective responses. We investigated its involvement in cisplatin resistance in long-term cisplatin treated UC cell lines (LTTs). Expression of NRF2 pathway components and targets was evaluated by qRT-PCR and western blotting in LTT sublines from four different parental cells. NRF2 transcriptional activity was determined by reporter assays and total glutathione (GSH) was quantified enzymatically. Effects of siRNA-mediated NRF2 knockdown on chemosensitivity were analysed by viability assays, γH2AX immunofluorescence, and flow cytometry. Increased expression of NRF2, its positive regulator p62/SQSTM1, and elevated NRF2 activity was observed in 3/4 LTTs, which correlated with KEAP1 expression. Expression of cytoprotective enzymes and GSH concentration were upregulated in some LTTs. NRF2 knockdown resulted in downregulation of cytoprotective enzymes and resensitised 3/4 LTTs towards cisplatin as demonstrated by reduced IC50 values, increased γH2AX foci formation, and elevated number of apoptotic cells. In conclusion, while LTT lines displayed diversity in NRF2 activation, NRF2 signalling contributed to cisplatin resistance in LTT lines, albeit in diverse ways. Accordingly, inhibition of NRF2 can be used to resensitise UC cells to cisplatin, but responses in patients may likewise be variable. Full article
(This article belongs to the Special Issue Nrf2 in Redox Signaling: A Double Edged Sword)
Figures

Open AccessArticle Comprehensive Study of Multiple Stages Progressing to Nonalcoholic Steatohepatitis with Subsequent Fibrosis in SD Rats
Int. J. Mol. Sci. 2017, 18(8), 1681; doi:10.3390/ijms18081681
Received: 29 June 2017 / Revised: 17 July 2017 / Accepted: 17 July 2017 / Published: 18 August 2017
PDF Full-text (4812 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Because of the absence of the time course of histological nonalcoholic fatty hepatitis with subsequent fibrotic progression, the effective approaches available for controlling the onset and progression of non-alcoholic steatohepatitis (NASH) remain limited. Therefore, we detected the serum and liver tissue related lipid
[...] Read more.
Because of the absence of the time course of histological nonalcoholic fatty hepatitis with subsequent fibrotic progression, the effective approaches available for controlling the onset and progression of non-alcoholic steatohepatitis (NASH) remain limited. Therefore, we detected the serum and liver tissue related lipid metabolism disorder, liver pathology and relative molecular makers alteration dynamically in a high fat-sucrose diet during different time points. High fat-sucrose diet significantly increased the serum lipid level on day 10. The excess lipid accumulation in liver was referred to as simple steatosis after the feeding of a high fat-sucrose diet for 20 days. The high fat-sucrose diet induced a hepatic inflammation response on day 30. Similarly, hepatic fibrosis was also initiated on day 30 and gradually formed from the 30th to the 50th day. Oxidative stress may be related with the process from NASH to liver fibrosis. Insulin resistance was involved in the progression from hepatic steatosis to NASH with hepatic fibrosis from the 20th to the 50th day. In conclusion, we established a high fat-sucrose diet induced nonalcoholic fatty hepatitis with liver fibrosis rat model, which presented the time course of histological nonalcoholic steatohepatitis and the initiation and progression change of characteristic molecular makers in the process from steatosis to hepatic fibrosis. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Figures

Open AccessArticle Isorhamnetin and Quercetin Derivatives as Anti-Acetylcholinesterase Principles of Marigold (Calendula officinalis) Flowers and Preparations
Int. J. Mol. Sci. 2017, 18(8), 1685; doi:10.3390/ijms18081685
Received: 19 June 2017 / Revised: 25 July 2017 / Accepted: 1 August 2017 / Published: 2 August 2017
PDF Full-text (1068 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Marigold (Calendula officinalis L.) is one of the most common and widespread plants used medicinally all over the world. The present study aimed to evaluate the anti-acetylcholinesterase activity of marigold flowers, detect the compounds responsible and perform chemical analysis of marigold commercial
[...] Read more.
Marigold (Calendula officinalis L.) is one of the most common and widespread plants used medicinally all over the world. The present study aimed to evaluate the anti-acetylcholinesterase activity of marigold flowers, detect the compounds responsible and perform chemical analysis of marigold commercial products. Analysis of 23 varieties of C. officinalis flowers introduced into Siberia allowed us to select the Greenheart Orange variety due to the superior content of flavonoids (46.87 mg/g) and the highest inhibitory activity against acetylcholinesterase (IC50 63.52 µg/mL). Flavonoids, isorhamnetin and quercetin derivatives were revealed as potential inhibitors with the application of high-performance liquid chromatography (HPLC) activity-based profiling. Investigation of the inhibitory activity of isorhamnetin glycosides demonstrated the maximal potency for isorhamnetin-3-О-(2′′,6′′-di-acetyl)-glucoside (IC50 51.26 μM) and minimal potency for typhaneoside (isorhamnetin-3-O-(2′′,6′′-di-rhamnosyl)-glucoside; IC50 94.92 µM). Among quercetin derivatives, the most active compound was quercetin-3-О-(2′′,6′′-di-acetyl)-glucoside (IC50 36.47 µM), and the least active component was manghaslin (quercetin-3-O-(2′′,6′′-di-rhamnosyl)-glucoside; IC50 94.92 µM). Some structure-activity relationships were discussed. Analysis of commercial marigold formulations revealed a reduced flavonoid content (from 7.18–19.85 mg/g) compared with introduced varieties. Liquid extract was the most enriched preparation, characterized by 3.10 mg/mL of total flavonoid content, and infusion was the least enriched formulation (0.41 mg/mL). The presented results suggest that isorhamnetin and quercetin and its glycosides can be considered as potential anti-acetylcholinesterase agents. Full article
(This article belongs to the Special Issue Bioactive Phenolics and Polyphenols 2018)
Figures

Open AccessArticle Intramitochondrial Ascorbic Acid Enhances the Formation of Mitochondrial Superoxide Induced by Peroxynitrite via a Ca2+-Independent Mechanism
Int. J. Mol. Sci. 2017, 18(8), 1686; doi:10.3390/ijms18081686
Received: 13 July 2017 / Revised: 30 July 2017 / Accepted: 30 July 2017 / Published: 2 August 2017
PDF Full-text (4901 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Exposure of U937 cells to peroxynitrite promotes mitochondrial superoxide formation via a mechanism dependent on both inhibition of complex III and increased mitochondrial Ca2+ accumulation. Otherwise inactive concentrations of the oxidant produced the same maximal effects in the presence of either complex
[...] Read more.
Exposure of U937 cells to peroxynitrite promotes mitochondrial superoxide formation via a mechanism dependent on both inhibition of complex III and increased mitochondrial Ca2+ accumulation. Otherwise inactive concentrations of the oxidant produced the same maximal effects in the presence of either complex III inhibitors or agents mobilizing Ca2+ from the ryanodine receptor and enforcing its mitochondrial accumulation. l-Ascorbic acid (AA) produced similar enhancing effects in terms of superoxide formation, DNA strand scission and cytotoxicity. However, AA failed to enhance the intra-mitochondrial concentration of Ca2+ and the effects observed in cells supplemented with peroxinitrite, while insensitive to manipulations preventing the mobilization of Ca2+, or the mitochondrial accumulation of the cation, were also detected in human monocytes and macrophages, which do not express the ryanodine receptor. In all these cell types, mitochondrial permeability transition-dependent toxicity was detected in cells exposed to AA/peroxynitrite and, based on the above criteria, these responses also appeared Ca2+-independent. The enhancing effects of AA are therefore similar to those mediated by bona fide complex III inhibitors, although the vitamin failed to directly inhibit complex III, and in fact enhanced its sensitivity to the inhibitory effects of peroxynitrite. Full article
(This article belongs to the Special Issue Mitochondria Crosstalks with other Organelles in Pathophysiology)
Figures

Open AccessArticle Design and In Vitro Evaluation of a Cytotoxic Conjugate Based on the Anti-HER2 Affibody Fused to the Fc Fragment of IgG1
Int. J. Mol. Sci. 2017, 18(8), 1688; doi:10.3390/ijms18081688
Received: 29 June 2017 / Revised: 27 July 2017 / Accepted: 31 July 2017 / Published: 3 August 2017
PDF Full-text (3134 KB) | HTML Full-text | XML Full-text
Abstract
In our previous work we demonstrated that a small protein called affibody can be used for a cytotoxic conjugate development. The anti-HER2 affibody was armed with one moiety of a highly potent auristatin E and specifically killed HER2-positive cancer cells with a nanomolar
[...] Read more.
In our previous work we demonstrated that a small protein called affibody can be used for a cytotoxic conjugate development. The anti-HER2 affibody was armed with one moiety of a highly potent auristatin E and specifically killed HER2-positive cancer cells with a nanomolar IC50. The aim of this study was to improve the anti-HER2 affibody conjugate by increasing its size and the number of conjugated auristatin molecules. The affibody was fused to the Fc fragment of IgG1 resulting in a dimeric construct with the molecular weight of 68 kDa, referred to as ZHER2:2891-Fc, ensuring its prolonged half-life in the blood. Due to the presence of four interchain cysteines, the fusion protein could carry four drug molecules. Notably, the in vitro tests of the improved anti-HER2 conjugate revealed that it exhibits the IC50 of 130 pM for the HER2-positive SK-BR-3 cells and 98 nM for the HER2-negative MDA-MB-231 cells. High efficacy and specificity of the auristatin conjugate based on ZHER2:2891-Fc indicate that this construct is suitable for further in vivo evaluation. Full article
(This article belongs to the Special Issue Tumor Targeting Therapy and Selective Killing)
Figures

Open AccessArticle Leptin Receptor Gene Variant rs11804091 Is Associated with BMI and Insulin Resistance in Spanish Female Obese Children: A Case-Control Study
Int. J. Mol. Sci. 2017, 18(8), 1690; doi:10.3390/ijms18081690
Received: 11 July 2017 / Revised: 27 July 2017 / Accepted: 28 July 2017 / Published: 3 August 2017
PDF Full-text (271 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Leptin is an endocrine hormone that has a critical role in body weight homoeostasis and mediates its effects via the leptin receptor (LEPR). Common polymorphisms in the genes coding leptin receptors have been associated with metabolic abnormalities. We assessed the association of 28
[...] Read more.
Leptin is an endocrine hormone that has a critical role in body weight homoeostasis and mediates its effects via the leptin receptor (LEPR). Common polymorphisms in the genes coding leptin receptors have been associated with metabolic abnormalities. We assessed the association of 28 LEPR polymorphisms with body mass index (BMI) and their relationship with obesity-related phenotypes, inflammation and cardiovascular disease risk biomarkers. A multicentre case-control study was conducted in 522 children (286 with obesity and 236 with normal-BMI). All anthropometric, metabolic factors and biomarkers were higher in children with obesity except apolipoprotein (Apo)-AI, cholesterol, high-density lipoprotein cholesterol (HDL-c), and adiponectin, which were lower in the obesity group; and glucose, low-density lipoprotein cholesterol (LDL-c), and matrix metalloproteinase-9 that did not differ between groups. We identified the associations between rs11208659, rs11804091, rs10157275, rs9436303 and rs1627238, and BMI in the whole population, as well as the association of rs11804091, rs10157275, and rs1327118 with BMI in the female group, although only the rs11804091 remained associated after Bonferroni correction (p = 0.038). This single nucleotide polymorphisms (SNP) was also associated with insulin (p = 0.004), homeostasis model assessment for insulin resistance (HOMA-IR) (p = 0.006), quantitative insulin sensitivity check index (QUICKI) (p = 0.005) and adiponectin (p = 0.046) after adjusting for age, Tanner stage and BMI. Our results show a sex-specific association between the rs11804091 and obesity suggesting an influence of this SNP on insulin resistance. Full article
(This article belongs to the Special Issue Adipokines)
Figures

Open AccessArticle Ghrelin Therapy Decreases Incidents of Intracranial Hemorrhage in Mice after Whole-Body Ionizing Irradiation Combined with Burn Trauma
Int. J. Mol. Sci. 2017, 18(8), 1693; doi:10.3390/ijms18081693
Received: 19 June 2017 / Revised: 17 July 2017 / Accepted: 27 July 2017 / Published: 3 August 2017
PDF Full-text (5108 KB) | HTML Full-text | XML Full-text
Abstract
Nuclear industrial accidents and the detonation of nuclear devices cause a variety of damaging factors which, when their impacts are combined, produce complicated injuries challenging for medical treatment. Thus, trauma following acute ionizing irradiation (IR) can deteriorate the IR-induced secondary reactive metabolic and
[...] Read more.
Nuclear industrial accidents and the detonation of nuclear devices cause a variety of damaging factors which, when their impacts are combined, produce complicated injuries challenging for medical treatment. Thus, trauma following acute ionizing irradiation (IR) can deteriorate the IR-induced secondary reactive metabolic and inflammatory impacts to dose-limiting tissues, such as bone marrow/lymphatic, gastrointestinal tissues, and vascular endothelial tissues, exacerbating the severity of the primary injury and decreasing survival from the exposure. Previously we first reported that ghrelin therapy effectively improved survival by mitigating leukocytopenia, thrombocytopenia, and bone-marrow injury resulting from radiation combined with burn trauma. This study was aimed at investigating whether radiation combined with burn trauma induced the cerebro-vascular impairment and intracranial hemorrhage that could be reversed by ghrelin therapy. When B6D2F1 female mice were exposed to 9.5 Gy Cobalt-60 γ-radiation followed by 15% total skin surface burn, cerebro-vascular impairment and intracranial hemorrhage as well as platelet depletion were observed. Ghrelin treatment after irradiation combined with burn trauma significantly decreased platelet depletion and brain hemorrhage. The results suggest that ghrelin treatment is an effective therapy for ionizing radiation combined with burn trauma. Full article
(This article belongs to the Special Issue Neurobiological Perspectives on Ghrelin)
Figures

Open AccessArticle Preparation and Evaluation of Dexamethasone (DEX)/Growth and Differentiation Factor-5 (GDF-5) Surface-Modified Titanium Using β-Cyclodextrin-Conjugated Heparin (CD-Hep) for Enhanced Osteogenic Activity In Vitro and In Vivo
Int. J. Mol. Sci. 2017, 18(8), 1695; doi:10.3390/ijms18081695
Received: 20 June 2017 / Revised: 15 July 2017 / Accepted: 2 August 2017 / Published: 3 August 2017
PDF Full-text (4621 KB) | HTML Full-text | XML Full-text
Abstract
The most ideal implant models in the dental and orthopedic fields to minimize the failure rate of implantation involve the improvement of osseointegration with host bone. Therefore, a focus of this study is the preparation of surface-modified titanium (Ti) samples of disc and
[...] Read more.
The most ideal implant models in the dental and orthopedic fields to minimize the failure rate of implantation involve the improvement of osseointegration with host bone. Therefore, a focus of this study is the preparation of surface-modified titanium (Ti) samples of disc and screw types using dexamethasone (DEX) and/or growth and differentiation factor-5 (GDF-5), as well as the evaluation of their efficacies on bone formation in vitro and in vivo. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle measurement were used to evaluate the surface chemical composition, surface morphology and wettability, respectively. The results showed that implant surfaces were successfully modified with DEX and/or GDF-5, and had rough surfaces along with hydrophilicity. DEX, GDF-5 or DEX/GDF-5 on the surface-modified samples were rapidly released within one day and released for 28 days in a sustained manner. The proliferation and bone formation of MC3T3-E1 cells cultured on pristine and surface-modified implants in vitro were examined by cell counting kit-8 (CCK-8) assay, as well as the measurements of alkaline phosphatase (ALP) activity and calcium deposition, respectively. MC3T3-E1 cells cultured on DEX/GDF-5–Ti showed noticeable ALP activity and calcium deposition in vitro. Active bone formation and strong osseointegration occurred at the interface between DEX/GDF-5–Ti and host bone, as evaluated by micro computed-tomography (micro CT) analysis. Surface modification using DEX/GDF-5 could be a good method for advanced implants for orthopaedic and dental applications. Full article
(This article belongs to the Section Biomaterial Sciences)
Figures

Open AccessArticle Coral-Derived Natural Marine Compound GB9 Impairs Vascular Development in Zebrafish
Int. J. Mol. Sci. 2017, 18(8), 1696; doi:10.3390/ijms18081696
Received: 25 May 2017 / Revised: 17 July 2017 / Accepted: 1 August 2017 / Published: 3 August 2017
PDF Full-text (5892 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Blood vessels in vertebrates are established and genetically controlled in an evolutionarily-conserved manner during embryogenesis. Disruption of vascular growth by chemical compounds or environmental hormones may cause developmental defects. This study analyzed the vascular impacts of marine compound GB9 in zebrafish. GB9 was
[...] Read more.
Blood vessels in vertebrates are established and genetically controlled in an evolutionarily-conserved manner during embryogenesis. Disruption of vascular growth by chemical compounds or environmental hormones may cause developmental defects. This study analyzed the vascular impacts of marine compound GB9 in zebrafish. GB9 was isolated from the marine soft coral Capnella imbricata and had shown anti-neuroinflammatory and anti-nociceptive activities. However, the role of GB9 on vascular development has not been reported. We first tested the survival rate of embryos under exogenous 5, 7.5, 10, and 15 μM GB9 added to the medium and determined a sub-lethal dosage of 10 μM GB9 for further assay. Using transgenic Tg(fli:eGFP) fish to examine vascular development, we found that GB9 treatment impaired intersegmental vessel (ISV) growth and caudal vein plexus (CVP) patterning at 25 hours post-fertilization (hpf) and 30 hpf. GB9 exposure caused pericardial edema and impaired circulation at 48–52 hpf, which are common secondary effects of vascular defects and suggest the effects of GB9 on vascular development. Apoptic cell death analysis showed that vascular defects were not caused by cell death, but were likely due to the inhibition of migration and/or proliferation by examining ISV cell numbers. To test the molecular mechanisms of vascular defects in GB9-treated embryos, we examined the expression of vascular markers and found the decreased expression of vascular specific markers ephrinb2, flk, mrc1, and stabilin. In addition, we examined whether GB9 treatment impairs vascular growth due to an imbalance of redox homeostasis. We found an enhanced effect of vascular defects during GB9 and H2O2 co-treatment. Moreover, exogenous N-acetyl-cysteine (NAC) treatment rescued the vascular defects in GB9 treated embryos. Our results showed that GB9 exposure causes vascular defects likely mediated by the imbalance of redox homeostasis. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Figures

Figure 1

Open AccessArticle Herbal Supplement in a Buffer for Dry Eye Syndrome Treatment
Int. J. Mol. Sci. 2017, 18(8), 1697; doi:10.3390/ijms18081697
Received: 28 May 2017 / Revised: 28 July 2017 / Accepted: 29 July 2017 / Published: 3 August 2017
PDF Full-text (4739 KB) | HTML Full-text | XML Full-text
Abstract
Dry eye syndrome (DES) is one of the most common types of ocular diseases. There is a major need to treat DES in a simple yet efficient way. Artificial tears (AT) are the most commonly used agents for treating DES, but are not
[...] Read more.
Dry eye syndrome (DES) is one of the most common types of ocular diseases. There is a major need to treat DES in a simple yet efficient way. Artificial tears (AT) are the most commonly used agents for treating DES, but are not very effective. Herbal extractions of ferulic acid (FA), an anti-oxidant agent, and kaempferol (KM), an anti-inflammatory reagent, were added to buffer solution (BS) to replace ATs for DES treatment. The cytotoxicity and anti-inflammatory effects were examined in vitro by co-culture with human corneal epithelial cells (HCECs) to obtain the optimal concentration of KM and FA for treating HCECs. Physical properties of BS, such as pH value, osmolality, and refractive index were also examined. Then, rabbits with DES were used for therapeutic evaluation. Tear production, corneal damage, and ocular irritation in rabbits’ eyes were examined. The non-toxic concentrations of KM and FA for HCEC cultivation over 3 days were 1 µM and 100 µM, respectively. Live/dead stain results also show non-toxicity of KM and FA for treating HCECs. Lipopolysaccharide-stimulated HCECs in inflammatory conditions treated with 100 µM FA and 1 µM KM (FA100/KM1) showed lower IL-1B, IL-6, IL-8, and TNFα expression when examined by real-time PCR. The BS with FA100/KM1 had neutral pH, and a similar osmolality and refractive index to human tears. Topical delivery of BS + FA100/KM1 showed no irritation to rabbit eyes. The corneal thickness in the BS + FA100/KM1 treated group was comparable to normal eyes. Results of DES rabbits treated with BS + FA100/KM1 showed less corneal epithelial damage and higher tear volume than the normal group. In conclusion, we showed that the combination of FA (100 µM) and KM (1 µM) towards treating inflamed HCECs had an anti-inflammatory effect, and it is effective in treating DES rabbits when BS is added in combination with these two herbal supplements and used as a topical eye drop. Full article
(This article belongs to the Special Issue Dry Eye and Ocular Surface Disorders)
Figures

Figure 1

Open AccessArticle Scar Prevention and Enhanced Wound Healing Induced by Polydeoxyribonucleotide in a Rat Incisional Wound-Healing Model
Int. J. Mol. Sci. 2017, 18(8), 1698; doi:10.3390/ijms18081698
Received: 23 June 2017 / Revised: 15 July 2017 / Accepted: 1 August 2017 / Published: 3 August 2017
PDF Full-text (12775 KB) | HTML Full-text | XML Full-text
Abstract
High-mobility group box protein-1 (HMGB-1) plays a central role in the inflammatory network, and uncontrolled chronic inflammation can lead to excessive scarring. The aim of this study was to evaluate the anti-inflammatory effects of polydeoxyribonucleotide (PDRN) on scar formation. Sprague-Dawley rats (n =
[...] Read more.
High-mobility group box protein-1 (HMGB-1) plays a central role in the inflammatory network, and uncontrolled chronic inflammation can lead to excessive scarring. The aim of this study was to evaluate the anti-inflammatory effects of polydeoxyribonucleotide (PDRN) on scar formation. Sprague-Dawley rats (n = 30) underwent dorsal excision of the skin, followed by skin repair. PDRN (8 mg/kg) was administered via intraperitoneal injection for three (PDRN-3 group, n = 8) or seven (PDRN-7 group, n = 8) days, and HMGB-1 was administered via intradermal injection in addition to PDRN treatment for three days (PDRN-3+HMGB-1 group; n = 6). The scar-reducing effects of PDRN were evaluated in the internal scar area and by inflammatory cell counts using histology and immunohistochemistry. Western blot, immunohistochemistry and immunofluorescence assays were performed to observe changes in type I and type III collagen and the expression of HMGB-1 and CD45. Treatment with PDRN significantly reduced the scar area, inflammatory cell infiltration and the number of CD45-positive cells. In addition, the increased expression of HMGB-1 observed in the sham group was significantly reduced after treatment with PDRN. Rats administered HMGB-1 in addition to PDRN exhibited scar areas with inflammatory cell infiltration similar to the sham group, and the collagen synthesis effects of PDRN were reversed. In summary, PDRN exerts anti-inflammatory and collagen synthesis effects via HMGB-1 suppression, preventing scar formation. Thus, we believe that the anti-inflammatory and collagen synthesis effects of PDRN resulted in faster wound healing and decreased scar formation. Full article
(This article belongs to the Special Issue Recent Advances in Scar Biology)
Figures

Open AccessArticle Biological Evaluation of Uridine Derivatives of 2-Deoxy Sugars as Potential Antiviral Compounds against Influenza A Virus
Int. J. Mol. Sci. 2017, 18(8), 1700; doi:10.3390/ijms18081700
Received: 28 June 2017 / Revised: 22 July 2017 / Accepted: 30 July 2017 / Published: 4 August 2017
PDF Full-text (1743 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Influenza virus infection is a major cause of morbidity and mortality worldwide. Due to the limited ability of currently available treatments, there is an urgent need for new anti-influenza drugs with broad spectrum protection. We have previously shown that two 2-deoxy sugar derivatives
[...] Read more.
Influenza virus infection is a major cause of morbidity and mortality worldwide. Due to the limited ability of currently available treatments, there is an urgent need for new anti-influenza drugs with broad spectrum protection. We have previously shown that two 2-deoxy sugar derivatives of uridine (designated IW3 and IW7) targeting the glycan processing steps during maturation of viral glycoproteins show good anti-influenza virus activity and may be a promising alternative approach for the development of new anti-influenza therapy. In this study, a number of IW3 and IW7 analogues with different structural modifications in 2-deoxy sugar or uridine parts were synthesized and evaluated for their ability to inhibit influenza A virus infection in vitro. Using the cytopathic effect (CPE) inhibition assay and viral plaque reduction assay in vitro, we showed that compounds 2, 3, and 4 exerted the most inhibitory effect on influenza virus A/ostrich/Denmark/725/96 (H5N2) infection in Madin-Darby canine kidney (MDCK) cells, with 50% inhibitory concentrations (IC50) for virus growth ranging from 82 to 100 (μM) without significant toxicity for the cells. The most active compound (2) showed activity of 82 μM with a selectivity index value of 5.27 against type A (H5N2) virus. Additionally, compound 2 reduced the formation of HA glycoprotein in a dose-dependent manner. Moreover, an analysis of physicochemical properties of studied compounds demonstrated a significant linear correlation between lipophilicity and antiviral activity. Therefore, inhibition of influenza A virus infection by conjugates of uridine and 2-deoxy sugars is a new promising approach for the development of new derivatives with anti-influenza activities. Full article
Figures

Open AccessArticle Influence of a Virgin Olive Oil versus Butter Plus Cholesterol-Enriched Diet on Testicular Enzymatic Activities in Adult Male Rats
Int. J. Mol. Sci. 2017, 18(8), 1701; doi:10.3390/ijms18081701
Received: 19 June 2017 / Revised: 24 July 2017 / Accepted: 31 July 2017 / Published: 4 August 2017
PDF Full-text (829 KB) | HTML Full-text | XML Full-text
Abstract
The aim of the present work was to improve our knowledge on the mechanisms underlying the beneficial or deleterious effects on testicular function of the so-called Mediterranean and Western diet by analyzing glutamyl aminopeptidase (GluAP), gamma glutamyl transpeptidase (GGT) and dipeptidyl peptidase IV
[...] Read more.
The aim of the present work was to improve our knowledge on the mechanisms underlying the beneficial or deleterious effects on testicular function of the so-called Mediterranean and Western diet by analyzing glutamyl aminopeptidase (GluAP), gamma glutamyl transpeptidase (GGT) and dipeptidyl peptidase IV (DPP IV) activities in testis, as enzymes involved in testicular function. Male Wistar rats (6 months old) were fed for 24 weeks with three different diets: standard (S), an S diet supplemented with virgin-olive-oil (20%) (VOO), or a S diet enriched with butter (20%) plus cholesterol (0.1%) (Bch). At the end of the experimental period, plasma lipid profiled (total triglycerides, total cholesterol and cholesterol fractions (HDL, LDL and VDL)) were measured. Enzymatic activities were determined by fluorimetric methods in soluble (sol) and membrane-bound (mb) fractions of testicular tissue using arylamide derivatives as substrates. Results indicated an increase in plasmatic triglycerides, total cholesterol, LDL and VLDL in Bch. A significant increase of mb GluAP and GGT activities was also found in this diet in comparison with the other two diets. Furthermore, significant and positive correlations were established between these activities and plasma triglycerides and/or total cholesterol. These results support a role for testicular GluAP and GGT activities in the effects of saturated fat (Western diet) on testicular functions. In contrast, VOO increased sol DPP IV activity in comparison with the other two diets, which support a role for this activity in the effects of monounsaturated fat (Mediterranean diet) on testicular function. The present results strongly support the influence of fatty acids and cholesterol on testicular GluAP and GGT activities and also provide support that the reported beneficial influence of the Mediterranean diet in male fertility may be mediated in part by an increase of testicular sol DPP IV activity. Full article
(This article belongs to the Special Issue The Beneficial Effects of Plant Oil on Human Health)
Figures

Open AccessArticle The SGLT2 Inhibitor Luseogliflozin Rapidly Normalizes Aortic mRNA Levels of Inflammation-Related but Not Lipid-Metabolism-Related Genes and Suppresses Atherosclerosis in Diabetic ApoE KO Mice
Int. J. Mol. Sci. 2017, 18(8), 1704; doi:10.3390/ijms18081704
Received: 21 June 2017 / Revised: 1 August 2017 / Accepted: 2 August 2017 / Published: 4 August 2017
PDF Full-text (2569 KB) | HTML Full-text | XML Full-text
Abstract
Recent clinical studies have revealed the treatment of diabetic patients with sodium glucose co-transporter2 (SGLT2) inhibitors to reduce the incidence of cardiovascular events. Using nicotinamide and streptozotocin (NA/STZ) -treated ApoE KO mice, we investigated the effects of short-term (seven days) treatment with the
[...] Read more.
Recent clinical studies have revealed the treatment of diabetic patients with sodium glucose co-transporter2 (SGLT2) inhibitors to reduce the incidence of cardiovascular events. Using nicotinamide and streptozotocin (NA/STZ) -treated ApoE KO mice, we investigated the effects of short-term (seven days) treatment with the SGLT2 inhibitor luseogliflozin on mRNA levels related to atherosclerosis in the aorta, as well as examining the long-term (six months) effects on atherosclerosis development. Eight-week-old ApoE KO mice were treated with NA/STZ to induce diabetes mellitus, and then divided into two groups, either untreated, or treated with luseogliflozin. Seven days after the initiation of luseogliflozin administration, atherosclerosis-related mRNA levels in the aorta were compared among four groups; i.e., wild type C57/BL6J, native ApoE KO, and NA/STZ-treated ApoE KO mice, with or without luseogliflozin. Short-term luseogliflozin treatment normalized the expression of inflammation-related genes such as F4/80, TNFα, IL-1β, IL-6, ICAM-1, PECAM-1, MMP2 and MMP9 in the NA/STZ-treated ApoE KO mice, which showed marked elevations as compared with untreated ApoE KO mice. In contrast, lipid metabolism-related genes were generally unaffected by luseogliflozin treatment. Furthermore, after six-month treatment with luseogliflozin, in contrast to the severe and widely distributed atherosclerotic changes in the aortas of NA/STZ-treated ApoE KO mice, luseogliflozin treatment markedly attenuated the progression of atherosclerosis, without affecting serum lipid parameters such as high density lipoprotein, low density lipoprotein and triglyceride levels. Given that luseogliflozin normalized the aortic mRNA levels of inflammation-related, but not lipid-related, genes soon after the initiation of treatment, it is not unreasonable to speculate that the anti-atherosclerotic effect of this SGLT2 inhibitor emerges rapidly, possibly via the prevention of inflammation rather than of hyperlipidemia. Full article
(This article belongs to the Special Issue Pathomechanisms of Atherosclerosis)
Figures

Open AccessArticle In Situ Forming Gelatin Hydrogels-Directed Angiogenic Differentiation and Activity of Patient-Derived Human Mesenchymal Stem Cells
Int. J. Mol. Sci. 2017, 18(8), 1705; doi:10.3390/ijms18081705
Received: 16 July 2017 / Revised: 30 July 2017 / Accepted: 1 August 2017 / Published: 4 August 2017
PDF Full-text (2663 KB) | HTML Full-text | XML Full-text
Abstract
Directing angiogenic differentiation of mesenchymal stem cells (MSCs) still remains challenging for successful tissue engineering. Without blood vessel formation, stem cell-based approaches are unable to fully regenerate damaged tissues due to limited support for cell viability and desired tissue/organ functionality. Herein, we report
[...] Read more.
Directing angiogenic differentiation of mesenchymal stem cells (MSCs) still remains challenging for successful tissue engineering. Without blood vessel formation, stem cell-based approaches are unable to fully regenerate damaged tissues due to limited support for cell viability and desired tissue/organ functionality. Herein, we report in situ cross-linkable gelatin−hydroxyphenyl propionic acid (GH) hydrogels that can induce pro-angiogenic profiles of MSCs via purely material-driven effects. This hydrogel directed endothelial differentiation of mouse and human patient-derived MSCs through integrin-mediated interactions at the cell-material interface, thereby promoting perfusable blood vessel formation in vitro and in vivo. The causative roles of specific integrin types (α1 and αvβ3) in directing endothelial differentiation were verified by blocking the integrin functions with chemical inhibitors. In addition, to verify the material-driven effect is not species-specific, we confirmed in vitro endothelial differentiation and in vivo blood vessel formation of patient-derived human MSCs by this hydrogel. These findings provide new insight into how purely material-driven effects can direct endothelial differentiation of MSCs, thereby promoting vascularization of scaffolds towards tissue engineering and regenerative medicine applications in humans. Full article
(This article belongs to the Special Issue Novel Biomaterials for Tissue Engineering 2017)
Figures

Open AccessArticle Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice
Int. J. Mol. Sci. 2017, 18(8), 1706; doi:10.3390/ijms18081706
Received: 10 July 2017 / Revised: 31 July 2017 / Accepted: 1 August 2017 / Published: 4 August 2017
PDF Full-text (6232 KB) | HTML Full-text | XML Full-text
Abstract
Atherosclerosis is an inflammatory disease in which dysfunction of mitochondria play an important role, and disorders of lipid management intensify this process. Agmatine, an endogenous polyamine formed by decarboxylation of arginine, exerts a protective effect on mitochondria and modulates fatty acid metabolism. We
[...] Read more.
Atherosclerosis is an inflammatory disease in which dysfunction of mitochondria play an important role, and disorders of lipid management intensify this process. Agmatine, an endogenous polyamine formed by decarboxylation of arginine, exerts a protective effect on mitochondria and modulates fatty acid metabolism. We investigated the effect of exogenous agmatine on the development of atherosclerosis and changes in lipid profile in apolipoprotein E knockout (apoE-/-) mice. Agmatine caused an approximate 40% decrease of atherosclerotic lesions, as estimated by en face and cross-section methods with an influence on macrophage but not on smooth muscle content in the plaques. Agmatine treatment did not changed gelatinase activity within the plaque area. What is more, the action of agmatine was associated with an increase in the number of high density lipoproteins (HDL) in blood. Real-Time PCR analysis showed that agmatine modulates liver mRNA levels of many factors involved in oxidation of fatty acid and cholesterol biosynthesis. Two-dimensional electrophoresis coupled with mass spectrometry identified 27 differentially expressed mitochondrial proteins upon agmatine treatment in the liver of apoE-/- mice, mostly proteins related to metabolism and apoptosis. In conclusion, prolonged administration of agmatine inhibits atherosclerosis in apoE-/- mice; however, the exact mechanisms linking observed changes and elevations of HDL plasma require further investigation. Full article
(This article belongs to the Special Issue Pathomechanisms of Atherosclerosis)
Figures

Open AccessArticle Artificial Auricular Cartilage Using Silk Fibroin and Polyvinyl Alcohol Hydrogel
Int. J. Mol. Sci. 2017, 18(8), 1707; doi:10.3390/ijms18081707
Received: 3 July 2017 / Revised: 29 July 2017 / Accepted: 1 August 2017 / Published: 4 August 2017
PDF Full-text (5571 KB) | HTML Full-text | XML Full-text
Abstract
Several methods for auricular cartilage engineering use tissue engineering techniques. However, an ideal method for engineering auricular cartilage has not been reported. To address this issue, we developed a strategy to engineer auricular cartilage using silk fibroin (SF) and polyvinyl alcohol (PVA) hydrogel.
[...] Read more.
Several methods for auricular cartilage engineering use tissue engineering techniques. However, an ideal method for engineering auricular cartilage has not been reported. To address this issue, we developed a strategy to engineer auricular cartilage using silk fibroin (SF) and polyvinyl alcohol (PVA) hydrogel. We constructed different hydrogels with various ratios of SF and PVA by using salt leaching, silicone mold casting, and freeze-thawing methods. We characterized each of the hydrogels in terms of the swelling ratio, tensile strength, pore size, thermal properties, morphologies, and chemical properties. Based on the cell viability results, we found a blended hydrogel composed of 50% PVA and 50% SF (P50/S50) to be the best hydrogel among the fabricated hydrogels. An intact 3D ear-shaped auricular cartilage formed six weeks after the subcutaneous implantation of a chondrocyte-seeded 3D ear-shaped P50/S50 hydrogel in rats. We observed mature cartilage with a typical lacunar structure both in vitro and in vivo via histological analysis. This study may have potential applications in auricular tissue engineering with a human ear-shaped hydrogel. Full article
(This article belongs to the Special Issue Three-dimensional (3D) Bioprinting of Tissues and Organs)
Figures

Open AccessArticle Co-Infection of Mosquitoes with Chikungunya and Dengue Viruses Reveals Modulation of the Replication of Both Viruses in Midguts and Salivary Glands of Aedes aegypti Mosquitoes
Int. J. Mol. Sci. 2017, 18(8), 1708; doi:10.3390/ijms18081708
Received: 21 June 2017 / Revised: 19 July 2017 / Accepted: 28 July 2017 / Published: 4 August 2017
PDF Full-text (10216 KB) | HTML Full-text | XML Full-text
Abstract
Arthropod-borne virus (arbovirus) infections cause several emerging and resurgent infectious diseases in humans and animals. Chikungunya-affected areas often overlap with dengue-endemic areas. Concurrent dengue virus (DENV) and chikungunya virus (CHIKV) infections have been detected in travelers returning from regions of endemicity. CHIKV and
[...] Read more.
Arthropod-borne virus (arbovirus) infections cause several emerging and resurgent infectious diseases in humans and animals. Chikungunya-affected areas often overlap with dengue-endemic areas. Concurrent dengue virus (DENV) and chikungunya virus (CHIKV) infections have been detected in travelers returning from regions of endemicity. CHIKV and DENV co-infected Aedes albopictus have also been collected in the vicinity of co-infected human cases, emphasizing the need to study co-infections in mosquitoes. We thus aimed to study the pathogen-pathogen interaction involved in these co-infections in DENV/CHIKV co-infected Aedes aegypti mosquitoes. In mono-infections, we detected CHIKV antigens as early as 4 days post-virus exposure in both the midgut (MG) and salivary gland (SG), whereas we detected DENV serotype 2 (DENV-2) antigens from day 5 post-virus exposure in MG and day 10 post-virus exposure in SG. Identical infection rates were observed for singly and co-infected mosquitoes, and facilitation of the replication of both viruses at various times post-viral exposure. We observed a higher replication for DENV-2 in SG of co-infected mosquitoes. We showed that mixed CHIKV and DENV infection facilitated viral replication in Ae. aegypti. The outcome of these mixed infections must be further studied to increase our understanding of pathogen-pathogen interactions in host cells. Full article
Figures

Open AccessArticle Systematic Selection of Reference Genes for the Normalization of Circulating RNA Transcripts in Pregnant Women Based on RNA-Seq Data
Int. J. Mol. Sci. 2017, 18(8), 1709; doi:10.3390/ijms18081709
Received: 21 June 2017 / Revised: 27 July 2017 / Accepted: 29 July 2017 / Published: 4 August 2017
PDF Full-text (1819 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
RNA transcripts circulating in peripheral blood represent an important source of non-invasive biomarkers. To accurately quantify the levels of circulating transcripts, one needs to normalize the data with internal control reference genes, which are detected at relatively constant levels across blood samples. A
[...] Read more.
RNA transcripts circulating in peripheral blood represent an important source of non-invasive biomarkers. To accurately quantify the levels of circulating transcripts, one needs to normalize the data with internal control reference genes, which are detected at relatively constant levels across blood samples. A few reference gene candidates have to be selected from transcriptome data before the validation of their stable expression by reverse-transcription quantitative polymerase chain reaction. However, there is a lack of transcriptome, let alone whole-transcriptome, data from maternal blood. To overcome this shortfall, we performed RNA-sequencing on blood samples from women presenting with preterm labor. The coefficient of variation (CV) of expression levels was calculated. Of 11,215 exons detected in the maternal blood whole-transcriptome, a panel of 395 genes, including PPP1R15B, EXOC8, ACTB, and TPT1, were identified to comprise exons with considerably less variable expression level (CV, 7.75–17.7%) than any GAPDH exon (minimum CV, 27.3%). Upon validation, the selected genes from this panel remained more stably expressed than GAPDH in maternal blood. This panel is over-represented with genes involved with the actin cytoskeleton, macromolecular complex, and integrin signaling. This groundwork provides a starting point for systematically selecting reference gene candidates for normalizing the levels of circulating RNA transcripts in maternal blood. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Open AccessArticle Endoplasmic Reticulum Stress Inducer Tunicamycin Alters Hepatic Energy Homeostasis in Mice
Int. J. Mol. Sci. 2017, 18(8), 1710; doi:10.3390/ijms18081710
Received: 22 July 2017 / Revised: 3 August 2017 / Accepted: 3 August 2017 / Published: 4 August 2017
PDF Full-text (6698 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Disorders of hepatic energy metabolism, which can be regulated by endoplasmic reticulum (ER) stress, lead to metabolic diseases such as hepatic steatosis and hypoglycemia. Tunicamycin, a pharmacological ER stress inducer, is used to develop an anti-cancer drug. However, the effects of tunicamycin on
[...] Read more.
Disorders of hepatic energy metabolism, which can be regulated by endoplasmic reticulum (ER) stress, lead to metabolic diseases such as hepatic steatosis and hypoglycemia. Tunicamycin, a pharmacological ER stress inducer, is used to develop an anti-cancer drug. However, the effects of tunicamycin on hepatic energy metabolism have not been well elucidated. Mice were intraperitoneally injected with tunicamycin or vehicle. Twenty-four hours later, hepatic triglyceride and glycogen content and serum lipids profiles were analyzed, as well as the expression of lipogenic and gluconeogenic genes. Tunicamycin significantly induced hepatic a yellowish color and ER stress, as well as increasing serum levels of aspartate transaminase and alanine transaminase. Besides, tunicamycin remarkably increased hepatic triglyceride content and suppressed the expression of apolipoprotein B100. In addition, tunicamycin-treated mice had lower serum levels of triglyceride, apolipoprotein B, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol. Gene expression of peroxisome proliferator-activated receptor α was decreased by tunicamycin, but the protein level was increased. Furthermore, blood glucose level and hepatic glycogen content were decreased in tunicamycin-treated mice. Protein kinase B signaling was attenuated in the tunicamycin-treated liver, but the expression and activities of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase were unchanged. Tunicamycin alters hepatic energy homeostasis by increasing triglyceride accumulation and decreasing glycogen content. Full article
(This article belongs to the Section Molecular Toxicology)
Figures

Open AccessArticle Exploring the Behavior and Metabolic Transformations of SeNPs in Exposed Lactic Acid Bacteria. Effect of Nanoparticles Coating Agent
Int. J. Mol. Sci. 2017, 18(8), 1712; doi:10.3390/ijms18081712
Received: 23 June 2017 / Revised: 25 July 2017 / Accepted: 27 July 2017 / Published: 5 August 2017
PDF Full-text (3896 KB) | HTML Full-text | XML Full-text
Abstract
The behavior and transformation of selenium nanoparticles (SeNPs) in living systems such as microorganisms is largely unknown. To address this knowledge gap, we examined the effect of three types of SeNP suspensions toward Lactobacillus delbrueckii subsp. bulgaricus LB-12 using a variety of techniques.
[...] Read more.
The behavior and transformation of selenium nanoparticles (SeNPs) in living systems such as microorganisms is largely unknown. To address this knowledge gap, we examined the effect of three types of SeNP suspensions toward Lactobacillus delbrueckii subsp. bulgaricus LB-12 using a variety of techniques. SeNPs were synthesized using three types of coating agents (chitosan (CS-SeNPs), hydroxyethyl cellulose (HEC-SeNPs) and a non-ionic surfactant, surfynol (ethoxylated-SeNPs)). Morphologies of SeNPs were all spherical. Transmission electron microscopy (TEM) was used to locate SeNPs in the bacteria. High performance liquid chromatography (HPLC) on line coupled to inductively coupled plasma mass spectrometry (ICP-MS) was applied to evaluate SeNP transformation by bacteria. Finally, flow cytometry employing the live/dead test and optical density measurements at 600 nm (OD600) were used for evaluating the percentages of bacteria viability when supplementing with SeNPs. Negligible damage was detected by flow cytometry when bacteria were exposed to HEC-SeNPs or CS-SeNPs at a level of 10 μg Se mL−1. In contrast, ethoxylated-SeNPs were found to be the most harmful nanoparticles toward bacteria. CS-SeNPs passed through the membrane without causing damage. Once inside, SeNPs were metabolically transformed to organic selenium compounds. Results evidenced the importance of capping agents when establishing the true behavior of NPs. Full article
Figures

Open AccessArticle Dynamic Changes of Pectin Epitopes in Cell Walls during the Development of the Procambium–Cambium Continuum in Poplar
Int. J. Mol. Sci. 2017, 18(8), 1716; doi:10.3390/ijms18081716
Received: 11 June 2017 / Revised: 7 July 2017 / Accepted: 31 July 2017 / Published: 6 August 2017
PDF Full-text (5330 KB) | HTML Full-text | XML Full-text
Abstract
The change of pectin epitopes during procambium–cambium continuum development was investigated by immunolocalization in poplar. The monoclonal antibody JIM5 labels homogalacturonan (HGA) with a low degree of esterification, and the monoclonal antibody JIM7 labels HGA with a high degree of methyl-esterification. Arabinan, rather
[...] Read more.
The change of pectin epitopes during procambium–cambium continuum development was investigated by immunolocalization in poplar. The monoclonal antibody JIM5 labels homogalacturonan (HGA) with a low degree of esterification, and the monoclonal antibody JIM7 labels HGA with a high degree of methyl-esterification. Arabinan, rather than galactan, and HGA with low degree of esterification were located in the cell walls of procambial, while HGA with a low degree of esterification was located in the tangential walls, and galactan was located in both the tangential and radial walls of procambial, yet nearly no arabinan was located in the tangential walls of the cambial cells. The changes in pectin distribution took place when periclinal divisions appeared within a procambial trace. The distribution difference of pectin epitopes was also present in procambium–cambium derivatives. The arabinan existed in all cell walls of primary xylem, but was absent from the tangential walls of secondary xylem cells. The galactan existed only in mature primary phloem. Furthermore, 19 pectin methylesterases (PMEs) genes were identified by RNA sequencing, six genes presented highly differentially and were supposed to be involved in the cell wall esterification process. The results provide direct evidence of the dynamic changes of pectin epitopes during the development of the procambium–cambium continuum in poplar. Full article
(This article belongs to the Section Molecular Botany)
Figures

Figure 1

Open AccessArticle Teratogenic Effects of Topiramate in a Zebrafish Model
Int. J. Mol. Sci. 2017, 18(8), 1721; doi:10.3390/ijms18081721
Received: 21 June 2017 / Revised: 20 July 2017 / Accepted: 24 July 2017 / Published: 7 August 2017
PDF Full-text (2955 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Topiramate is commonly used for treating epilepsy in both children and adults. Recent clinical data suggests that administration of topiramate to women during pregnancy increases the risk of oral clefts in their offspring. To better understand the potential effects of topiramate, we dosed
[...] Read more.
Topiramate is commonly used for treating epilepsy in both children and adults. Recent clinical data suggests that administration of topiramate to women during pregnancy increases the risk of oral clefts in their offspring. To better understand the potential effects of topiramate, we dosed adult female zebrafish with topiramate, and investigated the altered morphologies in adult females and their offspring. It showed that topiramate-treated female fish had reduced oocyte maturation, and the survival rates of their offspring were seriously decreased during embryogenesis. In addition, around 23% of offspring displayed cartilage malformation in the craniofacial area, such as loss of ceratobranchial cartilages as well as impaired ceratohyal, Meckel’s cartilage and ethmoid plate development. Moreover, mineralization of ceratohyal, Meckel’s cartilage, and vertebrae were downregulated during bone development. Taken together, we concluded that topiramate impaired oogenesis in the maternal reproductive system, and then caused offspring cartilage malformation or bone dysplasia. Full article
(This article belongs to the Section Molecular Toxicology)
Figures

Figure 1

Open AccessArticle Platelet-Rich Fibrin Facilitates Rabbit Meniscal Repair by Promoting Meniscocytes Proliferation, Migration, and Extracellular Matrix Synthesis
Int. J. Mol. Sci. 2017, 18(8), 1722; doi:10.3390/ijms18081722
Received: 5 July 2017 / Revised: 28 July 2017 / Accepted: 3 August 2017 / Published: 7 August 2017
PDF Full-text (7040 KB) | HTML Full-text | XML Full-text
Abstract
Although platelet-rich fibrin (PRF) has been used in clinical practice for some time, to date, few studies reveal its role as a bioactive scaffold in facilitating meniscal repair. Here, the positive anabolic effects of PRF on meniscocytes harvested from the primary culture of
[...] Read more.
Although platelet-rich fibrin (PRF) has been used in clinical practice for some time, to date, few studies reveal its role as a bioactive scaffold in facilitating meniscal repair. Here, the positive anabolic effects of PRF on meniscocytes harvested from the primary culture of a rabbit meniscus were revealed. The rabbit meniscocytes were cultured with different concentrations of PRF-conditioned medium, and were evaluated for their ability to stimulate cell migration, proliferation, and extracellular matrix formation. In vivo, meniscal defects were created via an established rabbit animal model and were evaluated by a histology-based four-stage scoring system to validate the treatment outcome three months postoperatively. The in vitro results showed that PRF could induce cellular migration and promote proliferation and meniscocyte extracellular matrix (ECM) synthesis of cultured meniscocytes. In addition, PRF increased the formation and deposition of cartilaginous matrix produced by cultured meniscocytes. Morphological and histological evaluations demonstrated that PRF could facilitate rabbit meniscal repair. The data highlight the potential utility of using PRF in augmenting the healing of meniscal injuries. These advantages would benefit clinical translation, and are a potential new treatment strategy for meniscal repair. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Figure 1

Open AccessArticle Shear Bond Strength and Remineralisation Effect of a Casein Phosphopeptide-Amorphous Calcium Phosphate-Modified Glass Ionomer Cement on Artificial “Caries-Affected” Dentine
Int. J. Mol. Sci. 2017, 18(8), 1723; doi:10.3390/ijms18081723
Received: 5 June 2017 / Revised: 13 July 2017 / Accepted: 3 August 2017 / Published: 7 August 2017
PDF Full-text (2366 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
This study investigated the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-modified glass ionomer cement (GIC) on shear bond strength (SBS) and remineralisation of artificial “caries-affected” dentine. Human dentine slices were demineralised and allocated to three groups: group 1, conventional GIC; group 2, CPP-ACP-modified
[...] Read more.
This study investigated the effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-modified glass ionomer cement (GIC) on shear bond strength (SBS) and remineralisation of artificial “caries-affected” dentine. Human dentine slices were demineralised and allocated to three groups: group 1, conventional GIC; group 2, CPP-ACP-modified GIC; and group 3, resin-modified GIC. The SBS was measured using a universal testing machine (n = 16 per group). Remaining samples (n = 8 per group) were subjected to pH-cycling for 28 days. After pH-cycling, lesion depth and micro-mechanical properties at the sample-bonding interface were investigated using micro-computed tomography (micro-CT) and nano-indentation, respectively. The SBS for groups 1 to 3 were 4.6 ± 1.5 MPa, 4.2 ± 1.1 MPa, and 5.9 ± 1.9 MPa, respectively (p = 0.007; group 1, group 2 < group 3). Lesion depths determined by micro-CT for groups 1 to 3 were 186 ± 8 µm, 149 ± 14 µm, and 178 ± 8 µm, respectively (p < 0.001; group 2 < group 1, group 3). The mean (±SD, standard deviation) nano-hardness values for groups 1 to 3 were 0.85 ± 0.22 GPa, 1.14 ± 0.21 GPa, and 0.81 ± 0.09 GPa, respectively (p = 0.003; group 1, group 3 < group 2). The mean (±SD) elastic moduli for groups 1 to 3 were 1.70 ± 0.33 GPa, 2.35 ± 0.44 GPa, and 1.59 ± 0.13 GPa, respectively (p < 0.001; group 1, group 3 < group 2). The results suggest that the incorporation of CPP-ACP into GIC does not adversely affect the adhesion to artificial caries-affected dentine. Furthermore, CPP-ACP-modified GIC is superior to conventional GIC in promoting dentine remineralisation. Full article
(This article belongs to the Section Biomaterial Sciences)
Figures

Open AccessArticle Effects of Co-Culture Media on Hepatic Differentiation of hiPSC with or without HUVEC Co-Culture
Int. J. Mol. Sci. 2017, 18(8), 1724; doi:10.3390/ijms18081724
Received: 3 July 2017 / Revised: 24 July 2017 / Accepted: 2 August 2017 / Published: 7 August 2017
PDF Full-text (7280 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The derivation of hepatocytes from human induced pluripotent stem cells (hiPSC) is of great interest for applications in pharmacological research. However, full maturation of hiPSC-derived hepatocytes has not yet been achieved in vitro. To improve hepatic differentiation, co-cultivation of hiPSC with human umbilical
[...] Read more.
The derivation of hepatocytes from human induced pluripotent stem cells (hiPSC) is of great interest for applications in pharmacological research. However, full maturation of hiPSC-derived hepatocytes has not yet been achieved in vitro. To improve hepatic differentiation, co-cultivation of hiPSC with human umbilical vein endothelial cells (HUVEC) during hepatic differentiation was investigated in this study. In the first step, different culture media variations based on hepatocyte culture medium (HCM) were tested in HUVEC mono-cultures to establish a suitable culture medium for co-culture experiments. Based on the results, two media variants were selected to differentiate hiPSC-derived definitive endodermal (DE) cells into mature hepatocytes with or without HUVEC addition. DE cells differentiated in mono-cultures in the presence of those media variants showed a significant increase (p < 0.05) in secretion of α-fetoprotein and in activities of cytochrome P450 (CYP) isoenzymes CYP2B6 and CYP3A4 as compared with cells differentiated in unmodified HCM used as control. Co-cultivation with HUVEC did not further improve the differentiation outcome. Thus, it can be concluded that the effect of the used medium outweighed the effect of HUVEC co-culture, emphasizing the importance of the culture medium composition for hiPSC differentiation. Full article
(This article belongs to the Special Issue Stem Cell Research)
Figures

Open AccessArticle The Effect of Reduced Graphene Oxide-Coated Biphasic Calcium Phosphate Bone Graft Material on Osteogenesis
Int. J. Mol. Sci. 2017, 18(8), 1725; doi:10.3390/ijms18081725
Received: 18 July 2017 / Revised: 31 July 2017 / Accepted: 6 August 2017 / Published: 8 August 2017
PDF Full-text (8742 KB) | HTML Full-text | XML Full-text
Abstract
This study was conducted to evaluate the effect of biphasic calcium phosphate (BCP) coated with reduced graphene oxide (rGO) as bone graft materials on bone regeneration. The rGO-coated BCP bone graft material was fabricatied by mixing rGO and BCP at various concentrations. The
[...] Read more.
This study was conducted to evaluate the effect of biphasic calcium phosphate (BCP) coated with reduced graphene oxide (rGO) as bone graft materials on bone regeneration. The rGO-coated BCP bone graft material was fabricatied by mixing rGO and BCP at various concentrations. The surface charge of rGO-coated BCP was measured to be −14.43 mV, which formed a static electrostatic interaction. Cell viabilities were significantly diminished at higher concentrations of ≥100 μg/mL. The calvarial defects of 48 rats were implanted rGO-coated BCPs at a weight ratio of 2:1000 (rGO2), 4:1000 (rGO4), and 10:1000 (rGO10), repectively. BCP was used as a control group. The micro-CT and histological analysis were performed to evaluate new bone formation at 2 and 8 weeks after surgery. The results showed that the new bone volume (mm3) was significantly higher in the experimental groups than in the control group. Histological analysis showed that new bone areas (%) were significantly higher in the rGO2 and rGO10 than in the control, and significantly higher in rGO4 than in the rGO2 and rGO10. Conclusively, the rGO-coated BCP was found to be effective on osteogenesis and the concentration of the composite was an important factor. Full article
(This article belongs to the Special Issue Nano/Micro-Assisted Regenerative Medicine)
Figures

Open AccessArticle Super-Resolution Localization Microscopy of γ-H2AX and Heterochromatin after Folate Deficiency
Int. J. Mol. Sci. 2017, 18(8), 1726; doi:10.3390/ijms18081726
Received: 4 July 2017 / Revised: 31 July 2017 / Accepted: 4 August 2017 / Published: 8 August 2017
PDF Full-text (2839 KB) | HTML Full-text | XML Full-text
Abstract
Folate is an essential water-soluble vitamin in food and nutrition supplements. As a one-carbon source, it is involved in many central regulatory processes, such as DNA, RNA, and protein methylation as well as DNA synthesis and repair. Deficiency in folate is considered to
[...] Read more.
Folate is an essential water-soluble vitamin in food and nutrition supplements. As a one-carbon source, it is involved in many central regulatory processes, such as DNA, RNA, and protein methylation as well as DNA synthesis and repair. Deficiency in folate is considered to be associated with an increased incidence of several malignancies, including cervical cancer that is etiologically linked to an infection with “high-risk” human papilloma viruses (HPV). However, it is still not known how a recommended increase in dietary folate after its deprivation affects the physiological status of cells. To study the impact of folate depletion and its subsequent reconstitution in single cells, we used quantitative chromatin conformation measurements obtained by super-resolution fluorescence microscopy, i.e., single molecule localization microscopy (SMLM). As a read-out, we examined the levels and the (re)positioning of γ-H2AX tags and histone H3K9me3 heterochromatin tags after immunostaining in three-dimensional (3D)-conserved cell nuclei. As model, we used HPV16 positive immortalized human keratinocytes that were cultivated under normal, folate deficient, and reconstituted conditions for different periods of time. The results were compared to cells continuously cultivated in standard folate medium. After 13 weeks in low folate, an increase in the phosphorylation of the histone H2AX was noted, indicative of an accumulation of DNA double strand breaks. DNA repair activity represented by the formation of those γ-H2AX clusters was maintained during the following 15 weeks of examination. However, the clustered arrangements of tags appeared to relax in a time-dependent manner. Parallel to the repair activity, the chromatin methylation activity increased as detected by H3K9me3 tags. The progress of DNA double strand repair was accompanied by a reduction of the detected nucleosome density around the γ-H2AX clusters, suggesting a shift from hetero- to euchromatin to allow access to the repair machinery. In conclusion, these data demonstrated a folate-dependent repair activity and chromatin re-organization on the SMLM nanoscale level. This offers new opportunities to further investigate folate-induced chromatin re-organization and the associated mechanisms. Full article
(This article belongs to the Section Molecular Biophysics)
Figures

Open AccessArticle Spatial Distribution Patterns of Root-Associated Bacterial Communities Mediated by Root Exudates in Different Aged Ratooning Tea Monoculture Systems
Int. J. Mol. Sci. 2017, 18(8), 1727; doi:10.3390/ijms18081727
Received: 16 June 2017 / Revised: 18 July 2017 / Accepted: 4 August 2017 / Published: 8 August 2017
PDF Full-text (3562 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Positive plant–soil feedback depends on beneficial interactions between roots and microbes for nutrient acquisition; growth promotion; and disease suppression. Recent pyrosequencing approaches have provided insight into the rhizosphere bacterial communities in various cropping systems. However; there is a scarcity of information about the
[...] Read more.
Positive plant–soil feedback depends on beneficial interactions between roots and microbes for nutrient acquisition; growth promotion; and disease suppression. Recent pyrosequencing approaches have provided insight into the rhizosphere bacterial communities in various cropping systems. However; there is a scarcity of information about the influence of root exudates on the composition of root-associated bacterial communities in ratooning tea monocropping systems of different ages. In Southeastern China; tea cropping systems provide the unique natural experimental environment to compare the distribution of bacterial communities in different rhizo-compartments. High performance liquid chromatography–electrospray ionization–mass spectrometry (HPLC–ESI–MS) was performed to identify and quantify the allelochemicals in root exudates. A high-throughput sequence was used to determine the structural dynamics of the root-associated bacterial communities. Although soil physiochemical properties showed no significant differences in nutrients; long-term tea cultivation resulted in the accumulation of catechin-containing compounds in the rhizosphere and a lowering of pH. Moreover; distinct distribution patterns of bacterial taxa were observed in all three rhizo-compartments of two-year and 30-year monoculture tea; mediated strongly by soil pH and catechin-containing compounds. These results will help to explore the reasons why soil quality and fertility are disturbed in continuous ratooning tea monocropping systems; and to clarify the associated problems. Full article
(This article belongs to the Special Issue Plant Microbe Interaction 2017)
Figures

Open AccessArticle Methylmercury Uptake into BeWo Cells Depends on LAT2-4F2hc, a System L Amino Acid Transporter
Int. J. Mol. Sci. 2017, 18(8), 1730; doi:10.3390/ijms18081730
Received: 2 June 2017 / Revised: 28 July 2017 / Accepted: 1 August 2017 / Published: 8 August 2017
PDF Full-text (1743 KB) | HTML Full-text | XML Full-text
Abstract
The organic mercury compound methylmercury (MeHg) is able to target the fetal brain. However, the uptake of the toxicant into placental cells is incompletely understood. MeHg strongly binds to thiol-S containing molecules such as cysteine. This MeHg-l-cysteine exhibits some structural similarity to methionine.
[...] Read more.
The organic mercury compound methylmercury (MeHg) is able to target the fetal brain. However, the uptake of the toxicant into placental cells is incompletely understood. MeHg strongly binds to thiol-S containing molecules such as cysteine. This MeHg-l-cysteine exhibits some structural similarity to methionine. System L plays a crucial role in placental transport of essential amino acids such as leucine and methionine and thus has been assumed to also transport MeHg-l-cysteine across the placenta. The uptake of methylmercury and tritiated leucine and methionine into the choriocarcinoma cell line BeWo was examined using transwell assay and small interfering (si)RNA mediated gene knockdown. Upon the downregulation of large neutral amino acids transporter (LAT)2 and 4F2 cell-surface antigen heavy chain (4F2hc), respectively, the levels of [3H]leucine in BeWo cells are significantly reduced compared to controls treated with non-targeting siRNA (p < 0.05). The uptake of [3H]methionine was reduced upon LAT2 down-regulation as well as methylmercury uptake after 4F2hc silencing (p < 0.05, respectively). These findings suggest an important role of system L in the placental uptake of the metal. Comparing the cellular accumulation of mercury, leucine, and methionine, it can be assumed that (1) MeHg is transported through system L amino acid transporters and (2) system L is responsible for the uptake of amino acids and MeHg primarily at the apical membrane of the trophoblast. The findings together can explain why mercury in contrast to other heavy metals such as lead or cadmium is efficiently transported to fetal blood. Full article
(This article belongs to the Special Issue Metal Metabolism in Animals II)
Figures

Open AccessArticle Serum Aberrant N-Glycan Profile as a Marker Associated with Early Antibody-Mediated Rejection in Patients Receiving a Living Donor Kidney Transplant
Int. J. Mol. Sci. 2017, 18(8), 1731; doi:10.3390/ijms18081731
Received: 6 June 2017 / Revised: 1 August 2017 / Accepted: 7 August 2017 / Published: 8 August 2017
PDF Full-text (3286 KB) | HTML Full-text | XML Full-text
Abstract
We determined if the serum N-glycan profile can be used as a diagnostic marker of antibody-mediated rejection (ABMR) in living donor kidney transplant (LKTx) recipients. Glycoblotting, combined with mass spectrometry, was used to retrospectively examine N-glycan levels in the postoperative sera
[...] Read more.
We determined if the serum N-glycan profile can be used as a diagnostic marker of antibody-mediated rejection (ABMR) in living donor kidney transplant (LKTx) recipients. Glycoblotting, combined with mass spectrometry, was used to retrospectively examine N-glycan levels in the postoperative sera of 197 LKTx recipients of whom 16 recipients had ABMR with or without T-cell-mediated rejection (TCMR), 40 recipients had TCMR, and 141 recipients had no adverse events. Multivariate discriminant analysis for prediction of ABMR was performed by inputting an ABMR event as an explanatory variable and sex, age, and serum N-glycan level as objective variables. The N-glycan score was calculated by multiplying the level of candidate objective variables by objective function values. The ABMR predictive performance of the N-glycan score was assessed by receiver operator characteristic curve and Kaplan–Meier curve analyses. The N-glycan score discriminated ABMR with 81.25% sensitivity, 87.85% specificity, and an area under the curve (AUC) of 0.892 that was far superior to that of preformed donor-specific antibody status (AUC, 0.761). Recipients with N-glycan-positive scores >0.8770 had significantly shorter ABMR survival than that of recipients with N-glycan-negative scores. Although the limitations of our study includ its small sample size and retrospective nature, the serum N-glycan score may contribute to prediction of ABMR. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Open AccessArticle TrmFO, a Fibronectin-Binding Adhesin of Mycoplasma bovis
Int. J. Mol. Sci. 2017, 18(8), 1732; doi:10.3390/ijms18081732
Received: 16 April 2017 / Revised: 24 July 2017 / Accepted: 2 August 2017 / Published: 9 August 2017
PDF Full-text (3075 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Mycoplasma bovis is an important pathogenic mycoplasma, causing the cattle industry serious economic losses. Adhesion is a crucial step in the mycoplasmas’ infection and colonization process; fibronectin (Fn), an extracellular matrix glycoprotein, is a molecular bridge between the bacterial adhesins and host cell
[...] Read more.
Mycoplasma bovis is an important pathogenic mycoplasma, causing the cattle industry serious economic losses. Adhesion is a crucial step in the mycoplasmas’ infection and colonization process; fibronectin (Fn), an extracellular matrix glycoprotein, is a molecular bridge between the bacterial adhesins and host cell receptors. The present study was designed to characterize the Fn-binding ability of methylenetetrahydrofolate-tRNA-(uracil-5-)-methyltransferase (TrmFO) and its role in M. bovis cytoadherence. The trmFO (MBOV_RS00785) gene was cloned and expressed in E. coli BL21, and polyclonal antibodies against the recombinant TrmFO (rTrmFO) were raised in rabbits. Immunoblotting demonstrated that TrmFO was an immunogenic component, and the TrmFO expression was conserved in different M. bovis isolates. The mycoplasmacidal assay further showed that in the presence of complement, rabbit anti-recombinant TrmFO serum exhibited remarkable mycoplasmacidal efficacy. TrmFO was detected in both the M. bovis membrane and cytoplasm. By ligand dot blot and enzyme-linked immunosorbent assay (ELISA) binding assay, we found that rTrmFO bound Fn in a dose-dependent manner. Immunostaining visualized by confocal laser scanning microscopy showed that rTrmFO had capacity to adhere to the embryonic bovine lung (EBL) cells. In addition, the adhesion of M. bovis and rTrmFO to EBL cells could be inhibited by anti-rTrmFO antibodies. To the best of our knowledge, this is the first report to characterize the Fn-binding ability of TrmFO and its role in the bacterial adhesion to host cells. Full article
(This article belongs to the collection Proteins and Protein-Ligand Interactions)
Figures

Figure 1

Open AccessArticle Genome-Wide Organization and Expression Profiling of the SBP-Box Gene Family in Chinese Jujube (Ziziphus jujuba Mill.)
Int. J. Mol. Sci. 2017, 18(8), 1734; doi:10.3390/ijms18081734
Received: 10 July 2017 / Revised: 28 July 2017 / Accepted: 2 August 2017 / Published: 15 August 2017
PDF Full-text (2174 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Transcription factors play vital roles in the developmental processes of plants. The SQUAMOSA promoter binding protein (SBP) genes encode a family of plant-specific transcription factors and plays many crucial roles in plant development. In this study, 16 SBP-box gene family members were identified
[...] Read more.
Transcription factors play vital roles in the developmental processes of plants. The SQUAMOSA promoter binding protein (SBP) genes encode a family of plant-specific transcription factors and plays many crucial roles in plant development. In this study, 16 SBP-box gene family members were identified in Ziziphus jujuba Mill. Dongzao (Dongzao), which were distributed over 8 chromosomes. They were classified into seven groups according to their phylogenetic relationships with other SBP-box gene families. Within each group, genes shared similar exon-intron structures and motif locations. The number of exons varied among the groups. We identified 12 homologous gene pairs between Dongzao and Arabidopsis. Expression profiling revealed that ZjSBP02 and ZjSBP14 expressed highly in mature fruits, ZjSBP01 expressed higher in mature leaves than other tissues and the expression level of ZjSBP12 was much higher in the flowers. The transcriptome analysis indicated that ZjSBPs had different expression patterns in various tissues. This study represents the first systematic analysis of the SBP-box gene family in Z. jujuba. The data presented here provides a foundation for understanding the crucial roles of ZjSBP genes in plant growth and development. Full article
(This article belongs to the Section Molecular Botany)
Figures

Open AccessArticle Comparative Studies on Behavioral, Cognitive and Biomolecular Profiling of ICR, C57BL/6 and Its Sub-Strains Suitable for Scopolamine-Induced Amnesic Models
Int. J. Mol. Sci. 2017, 18(8), 1735; doi:10.3390/ijms18081735
Received: 5 July 2017 / Revised: 31 July 2017 / Accepted: 1 August 2017 / Published: 9 August 2017
PDF Full-text (5500 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Cognitive impairment and behavioral disparities are the distinctive baseline features to investigate in most animal models of neurodegenerative disease. However, neuronal complications are multifactorial and demand a suitable animal model to investigate their underlying basal mechanisms. By contrast, the numerous existing neurodegenerative studies
[...] Read more.
Cognitive impairment and behavioral disparities are the distinctive baseline features to investigate in most animal models of neurodegenerative disease. However, neuronal complications are multifactorial and demand a suitable animal model to investigate their underlying basal mechanisms. By contrast, the numerous existing neurodegenerative studies have utilized various animal strains, leading to factual disparity. Choosing an optimal mouse strain for preliminary assessment of neuronal complications is therefore imperative. In this study, we systematically compared the behavioral, cognitive, cholinergic, and inflammatory impairments of outbred ICR and inbred C57BL/6 mice strains subject to scopolamine-induced amnesia. We then extended this study to the sub-strains C57BL/6N and C57BL/6J, where in addition to the above-mentioned parameters, their endogenous antioxidant levels and cAMP response-element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) protein expression were also evaluated. Compared with the ICR strain, the scopolamine-inflicted C57BL/6 strains exhibited a substantial reduction of spontaneous alternation and an approximately two-fold increase in inflammatory protein expression, compared to the control group. Among the sub-strains, scopolamine-treated C57BL/6N strains exhibited declined step-through latency, elevated acetylcholinesterase (AChE) activity and inflammatory protein expression, associated with reduced endogenous antioxidant levels and p-CREB/BDNF expression, compared to the control and tacrine-treated groups. This indicates that the C57BL/6N strains exhibit significantly enhanced scopolamine-induced neuronal impairment compared to the other evaluated strains. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Figures

Open AccessArticle In Vitro Assays in Severe Cutaneous Adverse Drug Reactions: Are They Still Research Tools or Diagnostic Tests Already?
Int. J. Mol. Sci. 2017, 18(8), 1737; doi:10.3390/ijms18081737
Received: 2 June 2017 / Revised: 7 July 2017 / Accepted: 4 August 2017 / Published: 10 August 2017
PDF Full-text (386 KB) | HTML Full-text | XML Full-text
Abstract
Severe cutaneous adverse drug reactions (SCARs) represent life-threatening medical conditions and an appropriate causative diagnosis of these conditions is of the highest importance. Existing in vivo diagnostic methods are risky or are just contraindicated in these patients. Therefore, in vitro tests take on
[...] Read more.
Severe cutaneous adverse drug reactions (SCARs) represent life-threatening medical conditions and an appropriate causative diagnosis of these conditions is of the highest importance. Existing in vivo diagnostic methods are risky or are just contraindicated in these patients. Therefore, in vitro tests take on greater significance. In this survey, the studies on in vitro assays in SCARs were identified with a defined searching strategy and strict eligibility criteria. Different methods in the particular clinical manifestations and the groups of drugs were compared in respect to the diagnostic parameters obtained. The lymphocyte transformation test and IFNg-ELISpot (Interferon γ-Enzyme-linked immunospot assay) appeared to have the best evidence currently available. Further diagnostic assays, which are based mostly on distinct mechanisms of SCARs, may outdo previous assays but they still need confirmation in a larger group of patients and in more research centers. Data from pediatric populations and acute generalized exanthematous pustulosis (AGEP) patients are scarce. Some technical issues, limitations, and modifications of routine laboratory methods are also discussed. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Figure 1

Open AccessArticle The Variation Analysis of DNA Methylation in Wheat Carrying Gametocidal Chromosome 3C from Aegilops triuncialis
Int. J. Mol. Sci. 2017, 18(8), 1738; doi:10.3390/ijms18081738
Received: 6 July 2017 / Revised: 1 August 2017 / Accepted: 4 August 2017 / Published: 10 August 2017
PDF Full-text (1565 KB) | HTML Full-text | XML Full-text
Abstract
Gametocidal (Gc) chromosomes can ensure their preferential transmission by killing the gametes without themselves through causing chromosome breakage and therefore have been exploited as an effective tool for genetic breeding. However, to date very little is known about the molecular mechanism of Gc
[...] Read more.
Gametocidal (Gc) chromosomes can ensure their preferential transmission by killing the gametes without themselves through causing chromosome breakage and therefore have been exploited as an effective tool for genetic breeding. However, to date very little is known about the molecular mechanism of Gc action. In this study, we used methylation-sensitive amplified polymorphism (MSAP) technique to assess the extent and pattern of cytosine methylation alterations at the whole genome level between two lines of wheat Gc addition line and their common wheat parent. The results indicated that the overall levels of cytosine methylation of two studied Gc addition lines (CS–3C and CS–3C3C, 48.68% and 48.65%, respectively) were significantly increased when compared to common wheat CS (41.31%) and no matter fully methylated or hemimethylated rates enhanced in Gc addition lines. A set of 30 isolated fragments that showed different DNA methylation or demethylation patterns between the three lines were sequenced and the results indicated that 8 fragments showed significant homology to known sequences, of which three were homologous to MITE transposon (Miniature inverted–repeat transposable elements), LTR-retrotransposon WIS-1p and retrotransposon Gypsy, respectively. Overall, our results showed that DNA methylation could play a role in the Gc action. Full article
(This article belongs to the Special Issue Selected Papers from the 6th National Plant Protein Research Congress)
Figures

Figure 1

Open AccessArticle A Murine Model of Persistent Inflammation, Immune Suppression, and Catabolism Syndrome
Int. J. Mol. Sci. 2017, 18(8), 1741; doi:10.3390/ijms18081741
Received: 10 July 2017 / Revised: 2 August 2017 / Accepted: 7 August 2017 / Published: 10 August 2017
PDF Full-text (2618 KB) | HTML Full-text | XML Full-text
Abstract
Critically ill patients that survive sepsis can develop a Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS), which often leads to extended recovery periods and multiple complications. Here, we utilized a cecal ligation and puncture (CLP) method in mice with the goal of creating
[...] Read more.
Critically ill patients that survive sepsis can develop a Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS), which often leads to extended recovery periods and multiple complications. Here, we utilized a cecal ligation and puncture (CLP) method in mice with the goal of creating a model that concurrently displays all the characteristics of PICS. We observed that, after eight days, mice that survive the CLP develop persistent inflammation with significant myelopoiesis in the bone marrow and spleen. These mice also demonstrate ongoing immune suppression, as evidenced by the decreased total and naïve splenic CD4 and CD8 T cells with a concomitant increase in immature myeloid cells. The mice further display significant weight loss and decreased muscle mass, indicating a state of ongoing catabolism. When PICS mice are challenged with intranasal Pseudomonas aeruginosa, mortality is significantly elevated compared to sham mice. This mortality difference is associated with increased bacterial loads in the lung, as well as impaired neutrophil migration and neutrophil dysfunction in the PICS mice. Altogether, we have created a sepsis model that concurrently exhibits PICS characteristics. We postulate that this will help determine the mechanisms underlying PICS and identify potential therapeutic targets to improve outcomes for this patient population. Full article
(This article belongs to the Special Issue Sepsis)
Figures

Figure 1

Open AccessArticle Electronegative Low-Density Lipoprotein L5 Impairs Viability and NGF-Induced Neuronal Differentiation of PC12 Cells via LOX-1
Int. J. Mol. Sci. 2017, 18(8), 1744; doi:10.3390/ijms18081744
Received: 20 July 2017 / Revised: 5 August 2017 / Accepted: 7 August 2017 / Published: 11 August 2017
PDF Full-text (5997 KB) | HTML Full-text | XML Full-text
Abstract
There have been striking associations of cardiovascular diseases (e.g., atherosclerosis) and hypercholesterolemia with increased risk of neurodegeneration including Alzheimer’s disease (AD). Low-density lipoprotein (LDL), a cardiovascular risk factor, plays a crucial role in AD pathogenesis; further, L5, a human plasma LDL fraction with
[...] Read more.
There have been striking associations of cardiovascular diseases (e.g., atherosclerosis) and hypercholesterolemia with increased risk of neurodegeneration including Alzheimer’s disease (AD). Low-density lipoprotein (LDL), a cardiovascular risk factor, plays a crucial role in AD pathogenesis; further, L5, a human plasma LDL fraction with high electronegativity, may be a factor contributing to AD-type dementia. Although L5 contributing to atherosclerosis progression has been studied, its role in inducing neurodegeneration remains unclear. Here, PC12 cell culture was used for treatments with human LDLs (L1, L5, or oxLDL), and subsequently cell viability and nerve growth factor (NGF)-induced neuronal differentiation were assessed. We identified L5 as a neurotoxic LDL, as demonstrated by decreased cell viability in a time- and concentration-dependent manner. Contrarily, L1 had no such effect. L5 caused cell damage by inducing ATM/H2AX-associated DNA breakage as well as by activating apoptosis via lectin-like oxidized LDL receptor-1 (LOX-1) signaling to p53 and ensuring cleavage of caspase-3. Additionally, sublethal L5 long-termly inhibited neurite outgrowth in NGF-treated PC12 cells, as evidenced by downregulation of early growth response factor-1 and neurofilament-M. This inhibitory effect was mediated via an interaction between L5 and LOX-1 to suppress NGF-induced activation of PI3k/Akt cascade, but not NGF receptor TrkA and downstream MAPK pathways. Together, our data suggest that L5 creates a neurotoxic stress via LOX-1 in PC12 cells, thereby leading to impairment of viability and NGF-induced differentiation. Atherogenic L5 likely contributes to neurodegenerative disorders. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Aging and Age-Related Disorders)
Figures

Open AccessArticle Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro
Int. J. Mol. Sci. 2017, 18(8), 1745; doi:10.3390/ijms18081745
Received: 27 July 2017 / Revised: 8 August 2017 / Accepted: 8 August 2017 / Published: 11 August 2017
PDF Full-text (4324 KB) | HTML Full-text | XML Full-text
Abstract
The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the
[...] Read more.
The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human dental pulp contains multipotent DPCs, including STRO-1, CD146 and P75-positive stem cells. DPC-formed spheroids were able to differentiate into neuronal, vascular, osteogenic and cartilaginous lineages under osteogenic induction. However, under neuronal inductive conditions, cells in the DPC-formed spheroids differentiated toward neuronal rather than other lineages. Electrophysiological study showed that these cells consistently exhibit the capacity to produce action potentials, suggesting that they have a functional feature in neuronal cells. We further co-cultivated DPCs with adult mouse hippocampal slices on matrigel in vitro. Immunostaining and presto blue assay showed that DPCs were able to stimulate the growth of neuronal cells (especially neurons) in both the CA1 zone and the edges of the hippocampal slices. Brain-derived neurotrophic factor (BDNF), was expressed in co-cultivated DPCs. In conclusion, our data demonstrated that DPCs are well-suited to differentiate into the neuronal lineage. They are able to stimulate neurogenesis in the adult mouse hippocampus through neurotrophic support in vitro. Full article
(This article belongs to the Special Issue Stem Cell Research)
Figures