19 pages, 7823 KiB  
Article
Reentry Flight Capability Assessment Based on Dynamics–Informed Neural Network and Piecewise Guidance
by Kai Liu, Jili Zhang and Xinlu Guo
Aerospace 2022, 9(12), 790; https://doi.org/10.3390/aerospace9120790 - 3 Dec 2022
Cited by 3 | Viewed by 2036
Abstract
To improve the flexibility of the trajectory and the diversity of the drop point of the reentry vehicle, a flight capability assessment method based on a dynamics–informed neural network (DINN) is proposed. Firstly, the concept of a reachable domain is introduced to characterize [...] Read more.
To improve the flexibility of the trajectory and the diversity of the drop point of the reentry vehicle, a flight capability assessment method based on a dynamics–informed neural network (DINN) is proposed. Firstly, the concept of a reachable domain is introduced to characterize the flight capability of the reentry vehicle and to estimate whether there are appropriate TAEM points in the area. Secondly, after the impact characteristic analysis, the reachable domains corresponding to different initial flight states are obtained through moderate dynamic simulations and reasonable mathematical expansion. The flight states and boundary point positions of the reachable domain are used as the training database of DINN, and the acquired DINN can realize the fast solution of reachable domains. Finally, the effectiveness of DINN in solving the reachable domain is verified using simulation. The simulation results show that DINN manifests the same accuracy as the existing solving methods and can meet the demand of determining whether the target point is located in the reachable domain. Additionally, the running time is shortened to one–800th of the existing methods, reaching the millisecond level, to support real–time assessment and decision–making. A predictor–corrector guidance algorithm with the piecewise objective function is also introduced. The simulation results illustrate that the proposed algorithm can stably guide the vehicle from the initial state points to the target points in the reachable domain. Full article
(This article belongs to the Special Issue Learning-Based Intelligent Control in Aerospace Applications)
Show Figures

Figure 1

15 pages, 5088 KiB  
Article
An AEFA-Based Optimum Design of Fuzzy PID Controller for Attitude Control Flywheel with BLDC Motor
by Zhizhou Zhang and Yang Li
Aerospace 2022, 9(12), 789; https://doi.org/10.3390/aerospace9120789 - 3 Dec 2022
Cited by 13 | Viewed by 2619
Abstract
A new method for optimizing the fuzzy PID controller, based on an artificial electric field algorithm (AEFA), is proposed in this paper, aiming at improving the stability indicator of the Brushless DC (BLDC) motor for the small satellite attitude control flywheel. The BLDC [...] Read more.
A new method for optimizing the fuzzy PID controller, based on an artificial electric field algorithm (AEFA), is proposed in this paper, aiming at improving the stability indicator of the Brushless DC (BLDC) motor for the small satellite attitude control flywheel. The BLDC motor is the basic part of the small satellite attitude control flywheel. In order to accurately control the attitude of the small satellite, a good motor control system is very important. Firstly, the mathematical model of the BLDC motor is established and the BLDC motor speed control system using traditional PID control is designed. Secondly, considering that the small satellite speed control system is a nonlinear system, a fuzzy PID control is designed to solve the shortcomings of the fixed parameters of the traditional PID control. Finally, we find that the control accuracy of the fuzzy PID control will change with the range of the input. Therefore, we introduce the AEFA to optimize fuzzy PID to achieve high-precision attitude control of small satellites. By simulating the BLDC motor system, the proposed fuzzy PID controller based on AEFA is compared with the traditional PID controller and the fuzzy PID controller. Results from different controllers show that the proposed control method could effectively reduce steady state error. In addition, the proposed fuzzy PID–AEFA controller has the better anti-jamming capability. Full article
(This article belongs to the Special Issue State Monitoring and Health Management of Complex Equipment)
Show Figures

Figure 1

15 pages, 3583 KiB  
Article
Life Analysis of Reusable Liquid Rocket Engine Thrust Chamber
by Yuanjie Qi, Yuqiang Cheng and Yan Zhang
Aerospace 2022, 9(12), 788; https://doi.org/10.3390/aerospace9120788 - 2 Dec 2022
Cited by 2 | Viewed by 4836
Abstract
The thrust chamber’s inner wall suffers high temperature and pressure differences from the coolant channel, which limits the life of the rocket engine. Life prediction of the thrust chamber really plays an important role in reusable launch vehicle propulsion systems. The Porowski beam [...] Read more.
The thrust chamber’s inner wall suffers high temperature and pressure differences from the coolant channel, which limits the life of the rocket engine. Life prediction of the thrust chamber really plays an important role in reusable launch vehicle propulsion systems. The Porowski beam model is widely used in the life prediction of reusable liquid rocket engine thrust chambers, which calculates the life caused by fatigue, creep, and thinning after each firing cycle. In order to analyze the life of the thrust chamber, a LOX/Kerosene rocket engine is investigated in this paper. The life analysis consists of pressure and temperature differences and structural parameters. Two kinds of inner wall materials were chosen for comparison in this research: OFHC copper and Narloy-Z alloy. The results are presented to offer a reference for the design and manufacture of reusable rocket engine thrust chambers in the future. Full article
(This article belongs to the Special Issue Liquid Rocket Engines)
Show Figures

Figure 1

10 pages, 8191 KiB  
Communication
Wake-Tailplane Interaction of a Slingsby Firefly Aircraft
by Nicholas J. Lawson, Simon G. Davies, Bidur Khanal and Rein I. Hoff
Aerospace 2022, 9(12), 787; https://doi.org/10.3390/aerospace9120787 - 2 Dec 2022
Cited by 2 | Viewed by 1716
Abstract
This paper presents in-flight measurements of the interaction of the wing wake of a stalled Slingsby T67 Firefly light aircraft with the aircraft tailplane. Tailplane data was recorded by a GoPro360 camera and analyzed using spatial correlation methods. The tailplane movement and corresponding [...] Read more.
This paper presents in-flight measurements of the interaction of the wing wake of a stalled Slingsby T67 Firefly light aircraft with the aircraft tailplane. Tailplane data was recorded by a GoPro360 camera and analyzed using spatial correlation methods. The tailplane movement and corresponding spectra indicate that the aerodynamic wake shedding frequency closely matches the resonant frequency of the tailplane, resulting in a significant excitation of the structure during heavy stall. Large magnitude, lower frequency tailplane movement was also identified by analysis of the pitch attitude from the image data, with results consistent in post-stall behavior reported by previous modelling and measurements. Full article
(This article belongs to the Special Issue Advanced Flow Diagnostic Tools)
Show Figures

Figure 1

23 pages, 17322 KiB  
Article
Compression and Deformation Behaviors of Hierarchical Circular-Cell Lattice Structure with Enhanced Mechanical Properties and Energy Absorption Capacity
by Mingzhi Wang, Junchao Zhang and Weidong Wang
Aerospace 2022, 9(12), 786; https://doi.org/10.3390/aerospace9120786 - 2 Dec 2022
Cited by 19 | Viewed by 3762
Abstract
The design of lightweight lattice structures with excellent specific mechanical properties has received great attention in recent years. In this paper, inspired by the hierarchical structure of biological materials, a novel hierarchical circular-cell configuration of a lattice structure was proposed. The advantage of [...] Read more.
The design of lightweight lattice structures with excellent specific mechanical properties has received great attention in recent years. In this paper, inspired by the hierarchical structure of biological materials, a novel hierarchical circular-cell configuration of a lattice structure was proposed. The advantage of the new lattice configuration is that the use of a smooth circular cell is able to alleviate the stress concentration induced by the intersection of straight struts. Additionally, the consideration of structural hierarchy can bring improved mechanical properties of lattice structures. The hierarchical circular lattice structures with 5 × 5 × 5 unit cells were fabricated through a digital light processing (DLP) 3D printer, using the hard-tough resin. The mechanical properties of the lattice structures were investigated by a compression experiment and a numerical simulation. Results show that the interaction effect of structural hierarchy was the potential mechanism for the enhancement of mechanical properties. The designed hierarchical circular-cell lattice structure exhibits improved stress distribution uniformity, enhanced mechanical performance, and energy absorption capacity. The maximum improvement values are ~342.4% for specific stiffness, ~13% for specific strength, ~126.6% for specific energy absorption (SEA), and ~18% for crash load efficiency (CLE). The developed hierarchical circular-cell lattice configuration will enrich the present lattice systems and be useful for future multifunctional applications. Full article
Show Figures

Figure 1

22 pages, 9532 KiB  
Article
Large Eddy Simulation of Combustion for High-Speed Airbreathing Engines
by Christer Fureby, Guillaume Sahut, Alessandro Ercole and Thommie Nilsson
Aerospace 2022, 9(12), 785; https://doi.org/10.3390/aerospace9120785 - 1 Dec 2022
Cited by 12 | Viewed by 3823
Abstract
Large Eddy Simulation (LES) has rapidly developed into a powerful computational methodology for fluid dynamic studies, between Reynolds-Averaged Navier–Stokes (RANS) and Direct Numerical Simulation (DNS) in both accuracy and cost. High-speed combustion applications, such as ramjets, scramjets, dual-mode ramjets, and rotating detonation engines, [...] Read more.
Large Eddy Simulation (LES) has rapidly developed into a powerful computational methodology for fluid dynamic studies, between Reynolds-Averaged Navier–Stokes (RANS) and Direct Numerical Simulation (DNS) in both accuracy and cost. High-speed combustion applications, such as ramjets, scramjets, dual-mode ramjets, and rotating detonation engines, are promising propulsion systems, but also challenging to analyze and develop. In this paper, the building blocks needed to perform LES of high-speed combustion are reviewed. Modelling of the unresolved, subgrid terms in the filtered LES equations is highlighted. The main families of combustion models are presented, focusing on finite-rate chemistry models. The density-based finite volume method and the reaction mechanisms commonly employed in LES of high-speed H2-air combustion are briefly reviewed. Three high-speed combustor applications are presented: an experiment of supersonic flame stabilization behind a bluff body, a direct connect facility experiment as a transition case from ramjet to scramjet operation mode, and the STRATOFLY MR3 Small-Scale Flight Experiment. Several combinations of turbulence and combustion models are compared. Comparisons with experiments are also provided when available. Overall, the results show good agreement with experimental data (e.g., shock train, mixing, wall heat flux, transition from ramjet to scramjet operation mode). Full article
(This article belongs to the Special Issue Large-Eddy Simulation Applications of Combustion Systems)
Show Figures

Figure 1

23 pages, 3772 KiB  
Article
A Novel Fuzzy-SAE Control Method for an Improved Test Wind Tunnel Simulating Sand/Dust Environment
by Ke Li, Yuangan Li, Liang Ma, Meng Liu and Jun Wang
Aerospace 2022, 9(12), 784; https://doi.org/10.3390/aerospace9120784 - 1 Dec 2022
Viewed by 2003
Abstract
The sand/dust environment is an important cause of aircraft failure. A sand/dust environment simulation experiment must be devised to meet the standard technical requirements. Therefore, this article designs the control system for a sand/dust environment test tunnel, including a wind speed control system [...] Read more.
The sand/dust environment is an important cause of aircraft failure. A sand/dust environment simulation experiment must be devised to meet the standard technical requirements. Therefore, this article designs the control system for a sand/dust environment test tunnel, including a wind speed control system and a pneumatic conveying and concentration control system. A fuzzy intelligent control method and a deep neural network are used to track and control experimental parameters. Compared to the classic PID algorithm, this method achieves smaller overshoot, faster response speed, no steady error and a better dynamic response curve, as demonstrated by both the test result in the wind tunnel and a simulation result. Both the classic PID control method and the high-precision fuzzy control method are fast, stable, and robust. The fuzzy-SAE intelligent control method not only has the high accuracy of the classic PID control method but also has the high speed, stability, and robustness of fuzzy control, which can meet the intelligent control requirements of the sand/dust environment test equipment. Full article
Show Figures

Figure 1

23 pages, 15694 KiB  
Article
Sensitivity Analysis of Geometrical Parameters to the Flow of Pre-swirl System after Turbine Blade Fracture
by Gang Zhao, Tian Qiu and Peng Liu
Aerospace 2022, 9(12), 783; https://doi.org/10.3390/aerospace9120783 - 1 Dec 2022
Cited by 1 | Viewed by 1897
Abstract
The pre-swirl stator-rotor system is a common and important structure in gas turbines, and its main function is to provide cold air to the turbine blades with a low relative total temperature. Under normal conditions, the boundaries of the system are symmetrical and [...] Read more.
The pre-swirl stator-rotor system is a common and important structure in gas turbines, and its main function is to provide cold air to the turbine blades with a low relative total temperature. Under normal conditions, the boundaries of the system are symmetrical and there is sufficient margin for each blade. However, a fracture of turbine blades can upset this balance, resulting in potentially different cold-air conditions for each blade. Therefore, to ensure the safety of the other blades after a single-blade break, it is necessary to know the cold-air distribution law of the system after a blade fracture. In this paper, the effects of geometric parameters (including pre-swirl angle, α; the area ratio of nozzles and holes, ξ; gap ratio, G; and radius ratio of nozzle and hole, δ) of a pre-swirl stator-rotor system on the mass-flow-rate ratio, η; total-pressure-loss coefficient, Cp; discharge coefficient of holes, Cd; and adiabatic effectiveness, Θad, are investigated by numerical simulation with a single blade fractured. The results show that most of the geometric parameter changes do not increase ηhole_0. Moreover, measures to increase the influence of pre-swirl nozzles can reduce the influence of blade fracture on mass flow distribution, such as larger α, smaller ξ, and smaller δ. As for Cp, Cd, and Θad, they are more sensitive to changes in α and ξ. For the pre-swirl system, to avoid more serious safety problems caused by individual blade fracture, the designer should make every effort to reduce the unevenness of the cold-air distribution. Increasing the effect of the nozzle could serve the aim, but it may increase the volatility of the flow. The pre-swirl nozzle of the leaf grille type is a good option to address flow fluctuations. Full article
(This article belongs to the Special Issue Aerodynamics Design)
Show Figures

Figure 1

19 pages, 4689 KiB  
Article
Large Eddy Simulation of the Influences of the Pilot-Stage Structure on the Flow Characteristics in a Centrally Staged High-Temperature-Rise Combustor
by Ge Hu, Qiongyao Qin, Wu Jin and Jianzhong Li
Aerospace 2022, 9(12), 782; https://doi.org/10.3390/aerospace9120782 - 1 Dec 2022
Cited by 6 | Viewed by 2463
Abstract
Centrally staged combustion technique is often used in the military high-temperature-rise combustor. The pilot-stage structure affects the flow characteristics in the centrally staged combustor, which further affects the performance of ignition, combustion, and emission of military aero-engines. In order to increase the flow [...] Read more.
Centrally staged combustion technique is often used in the military high-temperature-rise combustor. The pilot-stage structure affects the flow characteristics in the centrally staged combustor, which further affects the performance of ignition, combustion, and emission of military aero-engines. In order to increase the flow capacity of the swirler, the swirler with a non-rotating channel structure was designed. In this work, the influences of the pilot-stage structure on the flow characteristics in the centrally staged high-temperature-rise combustor are investigated. The flow fields of combustors with different pilot-stage swirl numbers (0.44, 0.60, and 0.71) are analyzed by large eddy simulation (LES). The results demonstrate that the primary recirculation zone (PRZ) becomes gradually longer and wider as the pilot-stage swirl number increases. In the combustors with three different pilot-stage structures, the precessing vortex core (PVC) was formed near the shear layer at the outlet of the pilot stage. The PVC frequency decreased from 1670 Hz to 1425 Hz and 1400 Hz with the increase of the pilot-stage swirl number from 0.44 to 0.60 and 0.71, respectively, and the breakdown position of the PVC shifted forward. The proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) methods are used to analyze the dynamic flow fields. It was observed that the corresponding frequency of the main pulsation structure decreased, and the flow instability was aggravated with the increase of the pilot-stage swirl number. The results deepen the understanding of the influences of the pilot-stage structure on the flow characteristics in the centrally staged high-temperature-rise combustor. Full article
(This article belongs to the Special Issue Large-Eddy Simulation Applications of Combustion Systems)
Show Figures

Figure 1

19 pages, 6083 KiB  
Article
Mesh Adaptation for Simulating Lateral Jet Interaction Flow
by Shuling Tian and Zongzi Peng
Aerospace 2022, 9(12), 781; https://doi.org/10.3390/aerospace9120781 - 1 Dec 2022
Cited by 1 | Viewed by 2143
Abstract
Under the condition of supersonic incoming flow, a missile lateral jet flow field has complex flow structures, such as a strong shock wave, an unsteady vortex and flow separation. In order to improve ability to capture complex flow structures in numerical simulation of [...] Read more.
Under the condition of supersonic incoming flow, a missile lateral jet flow field has complex flow structures, such as a strong shock wave, an unsteady vortex and flow separation. In order to improve ability to capture complex flow structures in numerical simulation of lateral jets, this paper proposes a combined-grid adaptive method. When combined with finite volume approximation of second-order and h-type adaptive technology, our method was verified by numerical experiments, which shows that wave structure and vortex structure in the jet flow field can be effectively captured at the same time. In comparison of uniformly refined mesh results, it was found that accuracy of computed results and resolution of characteristic flow structures were significantly improved after mesh adaptation. In comparison of the pressure coefficient, it was found that the error between the adaptive mesh and the uniformly refined mesh was smaller, and the maximum errors of the base grid, adaptive grid and uniformly refined grid were 92.1% and 12.3%. Full article
Show Figures

Figure 1

23 pages, 13357 KiB  
Article
Unsteady Numerical Investigation on the Sealing Effectiveness and Flow Field in Different Rim Seal Geometries
by Qingcai Zhang, Qinqin Wang, Xiaoming Tan and Jingzhou Zhang
Aerospace 2022, 9(12), 780; https://doi.org/10.3390/aerospace9120780 - 1 Dec 2022
Cited by 4 | Viewed by 2292
Abstract
A rim seal is often used to prevent the ingress of high-temperature gas into the turbine disk cavity and protect the turbine disk from damage. Based on the overlapping rim seal (Seal-A), this paper proposes two more composite sealing structures (Seal-B and Seal-C) [...] Read more.
A rim seal is often used to prevent the ingress of high-temperature gas into the turbine disk cavity and protect the turbine disk from damage. Based on the overlapping rim seal (Seal-A), this paper proposes two more composite sealing structures (Seal-B and Seal-C) to show the effects of a deep cavity in the static disk and a modified platform in the rotating disk. Three-dimensional unsteady Reynolds-averaged Navier–Stokes equations and the shear stress transfer (SST) k-ω turbulence model were used to reveal the flow field characteristics and the sealing efficiency. The results show that the rotor–stator interaction plays a dominant role in the sealing outlet pressure, and the sealing efficiency in the outflow area obtained by the transient calculation is lower than that of the steady-state calculation. The rise in the cooling air flow enhances the reverse vortex in the sealing cavity, and the disk cavity’s sealing efficiency is also improved. When the cooling air flow ratio increases from 0.6% to 1.8%, the sealing efficiency at the high radius increases by 30%. The shape of the deep cavity produces a new return vortex at the lower part of the sealing cavity, which improves the sealing efficiency. The shark nose platform in Seal-C aggravates the gas ingress at the sealing outlet but improves the sealing efficiency at the sealing cavity. In general, compared with Seal-A, the sealing efficiency of Seal-B and Seal-C is increased by 13.5% and 10%, respectively, at a cooling air flow ratio of 0.6%. Full article
Show Figures

Figure 1

26 pages, 8087 KiB  
Article
A Leakage Rate Model for Metal-to-Metal Seals Based on the Fractal Theory of Porous Medium
by Yong Liu, Hao Du, Xinjiang Ren, Baichun Li, Junze Qian and Fangchao Yan
Aerospace 2022, 9(12), 779; https://doi.org/10.3390/aerospace9120779 - 1 Dec 2022
Cited by 6 | Viewed by 3541
Abstract
Due to the complexity of sealing surface topography, it is difficult to take the surface topography into consideration when building a leakage rate model theoretically. Therefore, a theoretical model for estimating the leakage rate of metal-to-metal seals based on the fractal theory of [...] Read more.
Due to the complexity of sealing surface topography, it is difficult to take the surface topography into consideration when building a leakage rate model theoretically. Therefore, a theoretical model for estimating the leakage rate of metal-to-metal seals based on the fractal theory of porous medium, which can objectively reflect the influence of sealing surface topography from a microscopic perspective, is proposed in the present work. In the approach, fractal parameters are adopted to characterize the sealing surface. The sealing interface is supposed to be a porous medium space and the intrinsic parameters are obtained through rigorous theoretical derivation. The results show that the topography parameters of the sealing surface have a significant effect on the intrinsic parameters of the pore space and lead to a significant influence on the leakage rate of metal-to-metal seals. Specifically, the smoother the sealing surface, the lower the leakage rate of the metal-to-metal seal. Moreover, the leakage rate decreases with an increase in the contact pressure, and, if the fluid pressure difference is too large, the sealing performance will be seriously reduced. The proposed model provides a novel way to calculate the leakage rate of metal-to-metal seals. Full article
(This article belongs to the Special Issue State Monitoring and Health Management of Complex Equipment)
Show Figures

Figure 1

20 pages, 4352 KiB  
Article
An Application of Analytical Target Cascading for a Hierarchical Multidisciplinary System: The Preliminary Design of a Launch Vehicle Powered by Hybrid Rocket Motors
by Pengcheng Wang, Weile Xu, Hao Zhu, Hui Tian and Guobiao Cai
Aerospace 2022, 9(12), 778; https://doi.org/10.3390/aerospace9120778 - 1 Dec 2022
Cited by 5 | Viewed by 2028
Abstract
Analytical target cascading (ATC) is a method for coordinating hierarchical system design optimization with a decomposition-based framework. Since a launch vehicle (LV) is usually powered by two or more stages of rocket motors, the overall design of the LV clearly has a hierarchical [...] Read more.
Analytical target cascading (ATC) is a method for coordinating hierarchical system design optimization with a decomposition-based framework. Since a launch vehicle (LV) is usually powered by two or more stages of rocket motors, the overall design of the LV clearly has a hierarchical structure, including system level (conducted by the general design department) and subsystem level (conducted by the motor stage design department). In particular, the subsystem level contains stage-divided elements rather than discipline-divided elements. Therefore, ATC is inherently suitable for the overall design of the LV. This paper presents an ATC decomposition framework for LV design according to practical engineering. The feasibility of the multi-island genetic algorithm (MIGA) used in the ATC decomposition is verified by a mathematical programming test, in which non-linear programming with the quadratic Lagrangian (NLPQL) algorithm is set as a comparison. The multi-disciplinary analysis modules of a hybrid rocket motor (HRM) propelled LV, including propulsion, structure, aerodynamics and trajectory, are established. A hierarchical decomposition is proposed for this multi-level design with a multi-disciplinary model. The application and optimization results verify the feasibility of the ATC decomposition framework with MIGA in the preliminary design of the LV and the final orbit accuracy is better than that of the MDF method. In addition, the final design schemes also prove that HRMs can be considered as a feasible choice of propulsion system for a small payload at low earth orbit. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

14 pages, 4458 KiB  
Article
Development of Engine Maintenance Technology with Mixed Reality-Taking Pratt & Whitney JT9D as an Example
by Wen-Chung Wu and Cheng-Chiao Hung
Aerospace 2022, 9(12), 777; https://doi.org/10.3390/aerospace9120777 - 1 Dec 2022
Cited by 4 | Viewed by 3112
Abstract
The engine is the heart of the aircraft and deeply affects performance, flight safety, and airline management, which makes it a critical component requiring maintenance. With the advancement of technology, augmented reality (AR), virtual reality (VR), and mixed reality (MR) technologies have been [...] Read more.
The engine is the heart of the aircraft and deeply affects performance, flight safety, and airline management, which makes it a critical component requiring maintenance. With the advancement of technology, augmented reality (AR), virtual reality (VR), and mixed reality (MR) technologies have been introduced one after another. To increase maintenance skill ability, it is important to train for aviation maintenance. Therefore, the engine maintenance mixed reality (EMMR) system was developed through mixed reality technology in this study. There are three different scenarios have been developed in the EMMR system for making engine maintenance easy. In the first scenario, an exploded diagram of the disassembled engine with the main components has been made and an animation of the fuel flow has been demonstrated to introduce the basic structure of the engine. In the second scenario, interactive buttons and animations have been used to simulate the removal of the engine from the wing of an airplane so that the users can understand the process of disassembling the engine. In the third scenario, hybrid reality has been implemented to interact with the virtual objects, so that users could simulate the disassembly and replacement of the engine fan blades and get familiar with the whole process. Students have been introduced to and have been familiarized with the Microsoft HoloLens 2 and a survey has been conducted before and after using the developed technology to understand if the currently developed EMMR could help students to understand the process of each engine maintenance in the general classroom and make the learning more efficient at the same time. Full article
(This article belongs to the Special Issue Recent Advances in Technologies for Aerospace Maintenance)
Show Figures

Figure 1

14 pages, 3334 KiB  
Article
Research on Landing Stability of Four-Legged Adaptive Landing Gear for Multirotor UAVs
by Xinlei Ni, Qiaozhi Yin, Xiaohui Wei, Peilin Zhong and Hong Nie
Aerospace 2022, 9(12), 776; https://doi.org/10.3390/aerospace9120776 - 30 Nov 2022
Cited by 16 | Viewed by 4211
Abstract
Rotorcraft Unmanned Aerial Vehicles (UAVs) often need to take off and land under complex working conditions. The rugged terrains may cause the UAV to tilt during takeoff and landing and even cause rollover and other accidents in severe cases. In this paper, a [...] Read more.
Rotorcraft Unmanned Aerial Vehicles (UAVs) often need to take off and land under complex working conditions. The rugged terrains may cause the UAV to tilt during takeoff and landing and even cause rollover and other accidents in severe cases. In this paper, a new four-legged landing gear of multirotor UAVs with a passive cushioning structure is designed, aiming at the landing stability requirement of rotorcraft UAVs in complex terrains. The mathematical model of the landing gear dynamics is established in MATLAB/Simulink, and the drop test simulation is carried out under different landing terrain conditions. By comparing the simulation results of the drop test multibody dynamic model in Simcenter3D dynamics software, the adaptive landing and cushioning capacity of the landing gear and the accuracy of the mathematical model are verified. Combined with the landing stability criterion and control strategy of adaptive landing gear adjustment, the landing stability of adaptive landing gear under different slope angles of landing surface and horizontal velocities is studied. The landing stability boundary under different combinations of these two parameters is found. Full article
Show Figures

Figure 1