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Abstract: This paper presents in-flight measurements of the interaction of the wing wake of a stalled
Slingsby T67 Firefly light aircraft with the aircraft tailplane. Tailplane data was recorded by a
GoPro360 camera and analyzed using spatial correlation methods. The tailplane movement and
corresponding spectra indicate that the aerodynamic wake shedding frequency closely matches the
resonant frequency of the tailplane, resulting in a significant excitation of the structure during heavy
stall. Large magnitude, lower frequency tailplane movement was also identified by analysis of the
pitch attitude from the image data, with results consistent in post-stall behavior reported by previous
modelling and measurements.

Keywords: aerodynamic stall; wake body interaction

1. Introduction

The aerodynamic interaction between wakes and bodies is a complex and highly
non-linear system. These systems include wake vortex on landing aircraft [1], wind tur-
bine wake interactions [2] or propeller-rudder interactions [3]. Rockwell [4] has defined
different categories of wake interaction, with respect to the originating wake vorticity axes,
including before body interaction, parallel, streamwise and normal interaction. Specific to
wake interaction of an aircraft wing with a tailplane, this can be categorized as a parallel
interaction, or a tandem aerofoil interaction. Research at small scale has been reported on
tandem aerofoil interactions as a potential biomimetic propulsor [5]. At full-scale, wake
interaction can cause significant problems in aircraft design. A key example was the wake
issue reported with the F/A-18 fighter, where the wing wake directly interacted with the
tail fin [6]. This resulted in a major reduction of fin fatigue life, requiring modification of
the leading edge of the wing through a major testing program. In this work, the wake
interaction was characterized using unsteady flow and surface pressure sensors, mounted
into the fin, flow visualization and accelerometers mounted into the structure.

The following article presents results from a wing-tailplane wake interaction, with
image data recorded using a GoPro360 full-field camera and image cross-correlation. The
unsteady wake was generated during aerodynamic stall and results have indicated a
significant effect of the wake on the tailplane structure, due to the aerodynamic shedding
frequency of the wing, which was found to closely match the natural structural frequency
of the tailplane.

2. Slingsby Tailplane Tests

Previous work by the authors described a Direct Eddy Simulation (DES) model of a
Slingsby T67 aerobatic light aircraft and a series of flight tests, to validate the numerical
model in the stall [7,8]. In this work, the in-flight data focused on surface flow visualization,
accelerometer data, GPS data and cockpit instrument pressure data, and comparisons
identified a significant buffet frequency, which in both the in-flight accelerometer and DES
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aerodynamic spectra. A separate ground test was also carried out, to identify the natural
frequency of the wing, and showed this structural frequency could be discriminated from
the aerodynamic buffet frequency.

Subsequent examination of the full DES flow field showed a substantial interaction
of the wing wake with the tailplane during the stall [7,8]. Therefore, a further flight test
was conducted, to see if this wake interaction was significant and to ensure a higher level
of validation of the DES model. The following section presents details of this additional
flight test, including a separate ground test, which was used to establish the structural
frequencies of the tailplane.

2.1. Tailplane Ground Measurements

To measure the natural frequency of the tailplane, a Pixhawk4TM inertial reference
unit, with a weight of 33 g and a sample rate of 250 Hz, was secured to the top surface
of the tailplane using adhesive tape, near the tail tip. The tailplane, which is primarily
constructed from fiberglass and fixed to a fiberglass fuselage, was then excited with an
impulse impact in the vertical direction, within the stress limits of the tailplane structure.

With the elevator fixed in a level position, the impact excited a resonance which was
captured by the accelerometer. A typical response from the vertical axis accelerometer data
is shown in Figure 1 and the spectra for this response is shown in Figure 2. This excitation
was repeated with the elevator at maximum deflection (trailing edge up). However, no
significant changes were noted in the spectra. Errors in the spectra frequency, based on the
sampling frequency of the Pixhawk and spectra resolution, are estimated to be ±0.01Hz.
With reference to Figure 2, the spectra contain characteristic frequencies at 9.34 Hz, 12.75 Hz
and 16.92 Hz, with the former frequency the most dominant, based on amplitude. Previous
work [7] has shown the dominant shedding frequency during the stall to vary between
9 Hz to 12 Hz, indicating a potential aerodynamic excitation of the resonant frequency of
the tailplane structure, during the stall.
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2.2. Tailplane Airborne Measurements

To record the tailplane behavior during the stall, a GoPro Fusion 360 camera with a
framerate of 50Hz and resolution of 1920 pixels × 1080 pixels (3k50 mode) was mounted to
simultaneously record the front cockpit (see Figure 3) and rear view in-flight (see Figure 4).
In the rear view, the tailplane, canopy rail and antenna are visible. The flight test conditions
are also shown in Table 1. On entering the aerodynamic stall, the pilot progressively moved
the stick back to enter heavy buffet, continuing until experiencing significant ‘g-break’ and
wing drop, before recovering to level flight again. Further data from similar stall tests are
found in [7,8].
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Table 1. Summary of flight test conditions for the tailplane stall test.

Parameter Value Error Notes

Pressure altitude (feet) 6500 ±30 Standard pressure setting used
Outside air temperature (◦C) 5 ±0.5 Based on aircraft temperature gauge
Aircraft empty weight (kg) 902 ±20 Based on weight schedule

Pilot and fuel weight (kg) 138 ±10 Based on fuel gauge error with 80 L of fuel
at 0.72 kg/m3 and 80 kg pilot

Aircraft stall speed (knots) 58 ±3 Indicated airspeed reduced at 1 knot/s into
the stall and buffet until full back stick

To calculate tailplane tip displacement data from the GoPro video recording, a frame-
by-frame analysis process was developed, as shown in the schematic in Figure 5. In the
initial stage, the GoPro bitmap sequence of 2660 images in 24-bit format was extracted
from the video. The 47s image sequence started from a wings level condition until stall
recovery was commenced, and an 8-bit cropped sample of the tailplane tip area, with size
201 pixels × 221 pixels, was taken from the full image as shown in Figure 4. This cropped
image sequence was then processed using an in-house spatial cross-correlation code, ‘xpiv’
developed by the first author, written in X-Windows Motif and C-code. The code outputs
pixel displacement, based on the spatial correlation of key image-to-image features and an
initial image, at a selected number of grid points from a sequence of cropped bitmaps. In
this case, each cropped image was sampled with 32 pixel × 32 pixel interrogation windows
on a 3 × 3 grid, with centroid peak fit on the correlation peaks. A single grid point from
the dataset was subsequently sampled into a time series of displacement data, at the center
grid point of the sub-image.

In order to check for camera movement during the image sequence, a second correla-
tion data set was also processed, from a separate canopy rail cropped image or sub-window
(see Figure 4) where the movement of the camera relative to the rail feature was monitored,
with 5 × 3 grid points and 64 pixel × 64 pixel interrogation region sizes. This camera
movement was less than 0.05 pixels for the image sequence, which was several orders of
magnitude lower than the peak pixel movements from the tailplane tip.

Further xpiv processing of a third image sub-window, above the tailplane and to
the left of the fin (see Figures 4 and 5), was used to estimate the pitch-attitude of the
aircraft throughout the stall sequence, up to stall recovery. This approach assumed constant
background features throughout the 43s sequence, including the clouds and horizon. In
this case, to capture the gross features, a larger 512 × 512 interrogation region was used for
the cross correlation with a 3 × 3 grid. Estimates of pitch attitude angle were then derived
from previous aerodynamic data of the aircraft [7] and the point at which the stall warner
sounded in the cockpit, which is known to be 12◦ of pitch attitude. This data allowed
deviations in oscillations in pitch to be monitored before recovery by the pilot, and the
spectra of the oscillation frequency could also be calculated.

2.3. Data Processing Error Analysis

To estimate the error in measurement of the tailplane displacement, we need to
consider a simplified model of the imaging system. The camera uses a fisheye lens with a
field of view (FOV) of 180◦. This prohibits the assumption of rectilinear (pinhole) projection,
whereby straight lines from a flat object plane appear as straight lines in the image plane.
Therefore, based on work by Hughes et al. [9], who assessed a similar FOV fisheye lens
camera, we shall assume an equidistant projection model. In equidistant projection, the
radial distance on the image plane is directly proportional to the incidence ray angle. Hence,
with reference to Figure 6, with respect to the image plane origin O, the radius of projection
R on the image plane is found from:

R = f θ, (1)
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where R =
√

X2 + Y2, X and Y are distances from the sensor origin, f is the focal length
of the imaging lens, and the incidence ray has an angle θ to the camera axes. In this
case, the object plane is a hemisphere defined by a radius r =

√
x2 + y2 + z2 where x, y,

z are distances from the projection origin P of the lens, and the estimated object distance
to the tailplane tip do = r = 3140 mm. Further, with respect to the x–z and y–z distance
planes, the sub-angles θxz and θyz are defined by θxz = tan−1(x/z) and θyz = tan−1(y/z), given

θ = tan−1
(

y/
√

x2 + y2
)

.

Figure 5. Data processing approach to tailplane, canopy rail reference and pitch attitude estimation.
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In the object plane, a displacement of the tailplane tip at do, can be estimated from the
x–z and y–z radial components rxz, ryz such that:

∆rxz = do∆θxz (2)

∆ryz = do∆θyz (3)

where ∆rxz =
√

∆x2 + ∆z2 and ∆ryz =
√

∆y2 + ∆z2, and given (1), the corresponding
displacement in the imaging plane can be found from:

∆X = f ∆θxz (4)

∆Y = f ∆θyz (5)

Hence, from the image plane data, if the cross-correlation produces an error in mea-
surement of δX and δY, then at do, the error δr in measurement of the tailplane displacement
is simply found from:

δr =
do

f

√
δX2 + δY2, (6)

Thus, given a typical cross-correlation rms error is 0.05 pixel in X and Y [10], with
a pixel size of 1.8 microns, if f = 3 mm and do = 3140 mm, the rms displacement error in
tailplane measurement is estimated to be δr = ±0.09 mm, equivalent to 2 mrad. It should
be noted that for a fisheye lens, this error may vary across the FOV due to manufacturing
limitations, particularly near the edge of the FOV. In this case, as the tailplane tip is away
from the edge of the field, this error variation should be minimal.

For the measurement of frequency, given a sample rate of fsample, based on the Nyquist
criterion, using a fast Fourier transform (FFT), the resolution in frequency will be 2/fsample,
equivalent to 1 pixel in the FFT frequency plane. Hence, with a camera frame rate of 50 Hz,
the spectra resolution is estimated to be ±0.04 Hz.

3. Results

The pitch attitude time-series data is shown in Figure 7. The data is taken from
the rear-view sub-window from wings level flight to stall recovery at 38 s. Over the
total sampling period of 42 s, the peak pitch attitude was found to be 27◦ just before the
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‘g-break’, which occurs with a wing drop, preempting recovery by the pilot, to prevent a
spin developing. Before this point, the aircraft is seen to oscillate in pitch significantly, from
an initial stall at 22 s, after which heavy buffet developed. Figure 8 also shows the spectra
from the pitch attitude sequence, where the post-stall pitch oscillations have frequencies of
0.34–0.47 Hz. A similar post-stall buffet behavior has been reported in previous data [7,8]
and the pitch oscillatory behavior is also consistent with post-stall measurements and
modeling published by other authors [11,12]. The rear-view data includes the yaw angle
estimate, which varies from ±10◦, where this characteristic is a result of the interaction of
changes in sideslip angle, with the propeller yawing moment, the wing dihedral and the
boundary layer separation line on the wing [12,13].
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A sample of the time-series y-displacement data, taken from tailplane tip is shown
in Figure 9. There are initial tailplane displacements up to a time of 6 s, which are related
to the pilot throttling back the engine, before slowing the aircraft down to enter the stall
at 22 s. Over the total sampling period of 47 s, peak y-displacements were −7.48 mm to
+20.19 mm. The maximum displacement occurred when the pilot unloaded the tailplane to
recover from the stall at 41.3 s in the sequence. A shorter sample window from 30 s–40 s is
also shown in Figure 10, where peak oscillations during the buffet had y-displacements of
−7.48 mm to +4.49 mm, when the aircraft was heavily stalled, with significant buffet. In all
cases, the negative tailplane y-displacement originates from the tailplane load, which acts
in a negative y-direction, to counter the moment generated between the aerodynamic center
and the center of gravity of the aircraft. The oscillatory nature of the buffet on the tailplane
can be seen in the characteristic in Figure 10 and a spectra of the sample, in Figure 11.
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From this spectra, the lower frequency deflections of less than 1 Hz, evident in the
pitch attitude data (Figures 7 and 8), can also be seen in Figure 11. As discussed previously,
this pitching behavior matches stability modeling and experiments reported by previous
authors [11,12] and which are primarily driven by the unsteadiness in the separation
point of the wing, and the change in stability of the aircraft post-stall [12,13]. When
under these conditions, the tailplane is not stalled and this was confirmed by a previous
numerical model by the authors [7] and therefore the accelerations from these gross pitch
oscillations, clearly displace the tailplane. In this tailplane spectra, there was also a second
dominant peak of 9.28 Hz (Figure 11), which within experimental error, matches the natural
frequency of the tailplane, as shown in Figure 2. Therefore, it is clear the wake shedding
frequency from the wing is interacting with the tailplane and within a range of angle of
attack is closely matching the tailplane natural frequency. This results in this additional
significant excitation of the tailplane structure, and this is structurally undesirable. Further
synchronized accelerometer and camera data would be required to investigate any potential
phase modulation behavior of the wake with the tailplane, by comparison of the image and
accelerometer time series. These measurements are planned in future work.

4. Conclusions

Results from flight tests of a Slingsby Firefly light aircraft during an aerodynamic stall
have been presented which have been taken using a GoPro 360 camera. The rear-view of the
tailplane has allowed simultaneous analysis of estimates of the tailplane tip displacement,
the pitch attitude of the aircraft and the yaw angle of the aircraft. Errors in measurement of
the tailplane tip displacement and frequency were estimated to be ±0.09 mm (equivalent
to 2 mrad at an object distance of 3140 mm) and ±0.04 Hz, respectively. Due to the fisheye
properties of the camera lens, an equidistant projection model was used to estimate this
displacement error.

The flight test results focused on the tailplane displacement and spectra and identified
a significant tailplane interaction with of the main wing wake, which appears to excite one
of the dominant natural frequencies of the tailplane. This excitation is consistent with the
wake shedding frequency predicted by the authors using an unsteady CFD model [7,8]. The
pitch attitude data also identified lower oscillatory frequencies during heavy buffet which
are related to the stability characteristics of the aircraft during the stall and which are similar
to phenomena reported in previous wind tunnel measurements and theoretical modelling.
Further measurements using additional accelerometers and pressure measurements, with
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the imaging system, would be required to identify more complex phenomena, such as
phase modulation between the aerodynamic shedding and tailplane displacement.
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