13 pages, 1055 KiB  
Review
Revisiting Alpha-Synuclein Pathways to Inflammation
by Patrícia Lyra, Vanessa Machado, Silvia Rota, Kallol Ray Chaudhuri, João Botelho and José João Mendes
Int. J. Mol. Sci. 2023, 24(8), 7137; https://doi.org/10.3390/ijms24087137 - 12 Apr 2023
Cited by 16 | Viewed by 3330
Abstract
Alpha-synuclein (α-Syn) is a short presynaptic protein with an active role on synaptic vesicle traffic and the neurotransmitter release and reuptake cycle. The α-Syn pathology intertwines with the formation of Lewy Bodies (multiprotein intraneuronal aggregations), which, combined with inflammatory events, define various α-synucleinopathies, [...] Read more.
Alpha-synuclein (α-Syn) is a short presynaptic protein with an active role on synaptic vesicle traffic and the neurotransmitter release and reuptake cycle. The α-Syn pathology intertwines with the formation of Lewy Bodies (multiprotein intraneuronal aggregations), which, combined with inflammatory events, define various α-synucleinopathies, such as Parkinson’s Disease (PD). In this review, we summarize the current knowledge on α-Syn mechanistic pathways to inflammation, as well as the eventual role of microbial dysbiosis on α-Syn. Furthermore, we explore the possible influence of inflammatory mitigation on α-Syn. In conclusion, and given the rising burden of neurodegenerative disorders, it is pressing to clarify the pathophysiological processes underlying α-synucleinopathies, in order to consider the mitigation of existing low-grade chronic inflammatory states as a potential pathway toward the management and prevention of such conditions, with the aim of starting to search for concrete clinical recommendations in this particular population. Full article
(This article belongs to the Special Issue Neurobiology of Protein Synuclein)
Show Figures

Figure 1

16 pages, 2844 KiB  
Article
Adhesion to the Brain Endothelium Selects Breast Cancer Cells with Brain Metastasis Potential
by Bai Zhang, Xueyi Li, Kai Tang, Ying Xin, Guanshuo Hu, Yufan Zheng, Keming Li, Cunyu Zhang and Youhua Tan
Int. J. Mol. Sci. 2023, 24(8), 7087; https://doi.org/10.3390/ijms24087087 - 11 Apr 2023
Cited by 16 | Viewed by 2915
Abstract
Tumor cells metastasize from a primary lesion to distant organs mainly through hematogenous dissemination, in which tumor cell re-adhesion to the endothelium is essential before extravasating into the target site. We thus hypothesize that tumor cells with the ability to adhere to the [...] Read more.
Tumor cells metastasize from a primary lesion to distant organs mainly through hematogenous dissemination, in which tumor cell re-adhesion to the endothelium is essential before extravasating into the target site. We thus hypothesize that tumor cells with the ability to adhere to the endothelium of a specific organ exhibit enhanced metastatic tropism to this target organ. This study tested this hypothesis and developed an in vitro model to mimic the adhesion between tumor cells and brain endothelium under fluid shear stress, which selected a subpopulation of tumor cells with enhanced adhesion strength. The selected cells up-regulated the genes related to brain metastasis and exhibited an enhanced ability to transmigrate through the blood–brain barrier. In the soft microenvironments that mimicked brain tissue, these cells had elevated adhesion and survival ability. Further, tumor cells selected by brain endothelium adhesion expressed higher levels of MUC1, VCAM1, and VLA-4, which were relevant to breast cancer brain metastasis. In summary, this study provides the first piece of evidence to support that the adhesion of circulating tumor cells to the brain endothelium selects the cells with enhanced brain metastasis potential. Full article
(This article belongs to the Special Issue Cancer Prevention with Molecular Target Therapies 4.0)
Show Figures

Figure 1

15 pages, 4263 KiB  
Article
Unveiling the Genomic Basis of Chemosensitivity in Sarcomas of the Extremities: An Integrated Approach for an Unmet Clinical Need
by Silvia Vanni, Valentina Fausti, Eugenio Fonzi, Chiara Liverani, Giacomo Miserocchi, Chiara Spadazzi, Claudia Cocchi, Chiara Calabrese, Lorena Gurrieri, Nada Riva, Federica Recine, Roberto Casadei, Federica Pieri, Ania Naila Guerrieri, Massimo Serra, Toni Ibrahim, Laura Mercatali and Alessandro De Vita
Int. J. Mol. Sci. 2023, 24(8), 6926; https://doi.org/10.3390/ijms24086926 - 8 Apr 2023
Cited by 16 | Viewed by 2509
Abstract
Myxofibrosarcoma (MFS) and undifferentiated pleomorphic sarcoma (UPS) can be considered as a spectrum of the same disease entity, representing one of the most common adult soft tissue sarcoma (STS) of the extremities. While MFS is rarely metastasizing, it shows an extremely high rate [...] Read more.
Myxofibrosarcoma (MFS) and undifferentiated pleomorphic sarcoma (UPS) can be considered as a spectrum of the same disease entity, representing one of the most common adult soft tissue sarcoma (STS) of the extremities. While MFS is rarely metastasizing, it shows an extremely high rate of multiple frequent local recurrences (50–60% of cases). On the other hand, UPS is an aggressive sarcoma prone to distant recurrence, which is correlated to a poor prognosis. Differential diagnosis is challenging due to their heterogeneous morphology, with UPS remaining a diagnosis of exclusion for sarcomas with unknown differentiation lineage. Moreover, both lesions suffer from the unavailability of diagnostic and prognostic biomarkers. In this context, a genomic approach combined with pharmacological profiling could allow the identification of new predictive biomarkers that may be exploited for differential diagnosis, prognosis and targeted therapy, with the aim to improve the management of STS patients. RNA-Seq analysis identified the up-regulation of MMP13 and WNT7B in UPS and the up-regulation of AKR1C2, AKR1C3, BMP7, and SGCG in MFS, which were confirmed by in silico analyses. Moreover, we identified the down-regulation of immunoglobulin genes in patient-derived primary cultures that responded to anthracycline treatment compared to non-responder cultures. Globally, the obtained data corroborated the clinical observation of UPS as an histotype refractory to chemotherapy and the key role of the immune system in determining chemosensitivity of these lesions. Moreover, our results confirmed the validity of genomic approaches for the identification of predictive biomarkers in poorly characterized neoplasms as well as the robustness of our patient-derived primary culture models in recapitulating the chemosensitivity features of STS. Taken as a whole, this body of evidence may pave the way toward an improvement of the prognosis of these rare diseases through a treatment modulation driven by a biomarker-based patient stratification. Full article
Show Figures

Figure 1

15 pages, 957 KiB  
Review
Improving the Treatment Effect of Carotenoids on Alzheimer’s Disease through Various Nano-Delivery Systems
by Wenjing Su, Wenhao Xu, Enshuo Liu, Weike Su and Nikolay E. Polyakov
Int. J. Mol. Sci. 2023, 24(8), 7652; https://doi.org/10.3390/ijms24087652 - 21 Apr 2023
Cited by 15 | Viewed by 4272
Abstract
Natural bioactive compounds have recently emerged as a current strategy for Alzheimer’s disease treatment. Carotenoids, including astaxanthin, lycopene, lutein, fucoxanthin, crocin and others are natural pigments and antioxidants, and can be used to treat a variety of diseases, including Alzheimer’s disease. However, carotenoids, [...] Read more.
Natural bioactive compounds have recently emerged as a current strategy for Alzheimer’s disease treatment. Carotenoids, including astaxanthin, lycopene, lutein, fucoxanthin, crocin and others are natural pigments and antioxidants, and can be used to treat a variety of diseases, including Alzheimer’s disease. However, carotenoids, as oil-soluble substances with additional unsaturated groups, suffer from low solubility, poor stability and poor bioavailability. Therefore, the preparation of various nano-drug delivery systems from carotenoids is a current measure to achieve efficient application of carotenoids. Different carotenoid delivery systems can improve the solubility, stability, permeability and bioavailability of carotenoids to a certain extent to achieve Alzheimer’s disease efficacy. This review summarizes recent data on different carotenoid nano-drug delivery systems for the treatment of Alzheimer’s disease, including polymer, lipid, inorganic and hybrid nano-drug delivery systems. These drug delivery systems have been shown to have a beneficial therapeutic effect on Alzheimer’s disease to a certain extent. Full article
(This article belongs to the Special Issue The Role of Carotenoids in Health and Disease)
Show Figures

Figure 1

27 pages, 1165 KiB  
Review
Predictive Biomarkers for Immune-Checkpoint Inhibitor Treatment Response in Patients with Hepatocellular Carcinoma
by Jun Ho Ji, Sang Yun Ha, Danbi Lee, Kamya Sankar, Ekaterina K. Koltsova, Ghassan K. Abou-Alfa and Ju Dong Yang
Int. J. Mol. Sci. 2023, 24(8), 7640; https://doi.org/10.3390/ijms24087640 - 21 Apr 2023
Cited by 15 | Viewed by 6296
Abstract
Hepatocellular carcinoma (HCC) has one of the highest mortality rates among solid cancers. Late diagnosis and a lack of efficacious treatment options contribute to the dismal prognosis of HCC. Immune checkpoint inhibitor (ICI)-based immunotherapy has presented a new milestone in the treatment of [...] Read more.
Hepatocellular carcinoma (HCC) has one of the highest mortality rates among solid cancers. Late diagnosis and a lack of efficacious treatment options contribute to the dismal prognosis of HCC. Immune checkpoint inhibitor (ICI)-based immunotherapy has presented a new milestone in the treatment of cancer. Immunotherapy has yielded remarkable treatment responses in a range of cancer types including HCC. Based on the therapeutic effect of ICI alone (programmed cell death (PD)-1/programmed death-ligand1 (PD-L)1 antibody), investigators have developed combined ICI therapies including ICI + ICI, ICI + tyrosine kinase inhibitor (TKI), and ICI + locoregional treatment or novel immunotherapy. Although these regimens have demonstrated increasing treatment efficacy with the addition of novel drugs, the development of biomarkers to predict toxicity and treatment response in patients receiving ICI is in urgent need. PD-L1 expression in tumor cells received the most attention in early studies among various predictive biomarkers. However, PD-L1 expression alone has limited utility as a predictive biomarker in HCC. Accordingly, subsequent studies have evaluated the utility of tumor mutational burden (TMB), gene signatures, and multiplex immunohistochemistry (IHC) as predictive biomarkers. In this review, we aim to discuss the current state of immunotherapy for HCC, the results of the predictive biomarker studies, and future direction. Full article
Show Figures

Figure 1

13 pages, 2149 KiB  
Article
Simvastatin Reduces Doxorubicin-Induced Cardiotoxicity: Effects beyond Its Antioxidant Activity
by Michela Pecoraro, Stefania Marzocco, Raffaella Belvedere, Antonello Petrella, Silvia Franceschelli and Ada Popolo
Int. J. Mol. Sci. 2023, 24(8), 7573; https://doi.org/10.3390/ijms24087573 - 20 Apr 2023
Cited by 15 | Viewed by 2163
Abstract
This study aimed to evaluate if Simvastatin can reduce, and/or prevent, Doxorubicin (Doxo)-induced cardiotoxicity. H9c2 cells were treated with Simvastatin (10 µM) for 4 h and then Doxo (1 µM) was added, and the effects on oxidative stress, calcium homeostasis, and apoptosis were [...] Read more.
This study aimed to evaluate if Simvastatin can reduce, and/or prevent, Doxorubicin (Doxo)-induced cardiotoxicity. H9c2 cells were treated with Simvastatin (10 µM) for 4 h and then Doxo (1 µM) was added, and the effects on oxidative stress, calcium homeostasis, and apoptosis were evaluated after 20 h. Furthermore, we evaluated the effects of Simvastatin and Doxo co-treatment on Connexin 43 (Cx43) expression and localization, since this transmembrane protein forming gap junctions is widely involved in cardioprotection. Cytofluorimetric analysis showed that Simvastatin co-treatment significantly reduced Doxo-induced cytosolic and mitochondrial ROS overproduction, apoptosis, and cytochrome c release. Spectrofluorimetric analysis performed by means of Fura2 showed that Simvastatin co-treatment reduced calcium levels stored in mitochondria and restored cytosolic calcium storage. Western blot, immunofluorescence, and cytofluorimetric analyses showed that Simvastatin co-treatment significantly reduced Doxo-induced mitochondrial Cx43 over-expression and significantly increased the membrane levels of Cx43 phosphorylated on Ser368. We hypothesized that the reduced expression of mitochondrial Cx43 could justify the reduced levels of calcium stored in mitochondria and the consequent induction of apoptosis observed in Simvastatin co-treated cells. Moreover, the increased membrane levels of Cx43 phosphorylated on Ser368, which is responsible for the closed conformational state of the gap junction, let us to hypothesize that Simvastatin leads to cell-to-cell communication interruption to block the propagation of Doxo-induced harmful stimuli. Based on these results, we can conclude that Simvastatin could be a good adjuvant in Doxo anticancer therapy. Indeed, we confirmed its antioxidant and antiapoptotic activity, and, above all, we highlighted that Simvastatin interferes with expression and cellular localization of Cx43 that is widely involved in cardioprotection. Full article
(This article belongs to the Special Issue Oxidative Stress and Inflammation in Cardiovascular Disease)
Show Figures

Figure 1

20 pages, 2681 KiB  
Review
GSK-3β Allosteric Inhibition: A Dead End or a New Pharmacological Frontier?
by Beatrice Balboni, Mirco Masi, Walter Rocchia, Stefania Girotto and Andrea Cavalli
Int. J. Mol. Sci. 2023, 24(8), 7541; https://doi.org/10.3390/ijms24087541 - 19 Apr 2023
Cited by 15 | Viewed by 4043
Abstract
Most kinase inhibitors are designed to bind to highly homologous ATP-binding sites, which leads to promiscuity and possible off-target effects. Allostery is an alternative approach to pursuing selectivity. However, allostery is difficult to exploit due to the wide variety of underlying mechanisms and [...] Read more.
Most kinase inhibitors are designed to bind to highly homologous ATP-binding sites, which leads to promiscuity and possible off-target effects. Allostery is an alternative approach to pursuing selectivity. However, allostery is difficult to exploit due to the wide variety of underlying mechanisms and the potential involvement of long-range conformational effects that are difficult to pinpoint. GSK-3β is involved in several pathologies. This critical target has an ATP-binding site that is highly homologous with the orthosteric sites of other kinases. Unsurprisingly, there is also great similarity between the ATP-binding sites of GSK-3β and its isomer, which is not redundant and thus would benefit from selective inhibition. Allostery would also allow for a moderate and tunable inhibition, which is ideal for GSK-3β, because this target is involved in multiple pathways, some of which must be preserved. However, despite considerable research efforts, only one allosteric GSK-3β inhibitor has reached the clinic. Moreover, unlike other kinases, there are no X-ray structures of GSK-3β in complex with allosteric inhibitors in the PDB data bank. This review aims to summarize the state of the art in allosteric GSK-3β inhibitor investigations, highlighting the aspects that make this target challenging for an allosteric approach. Full article
(This article belongs to the Special Issue Early-Stage Drug Discovery: Advances and Challenges 2.0)
Show Figures

Figure 1

37 pages, 919 KiB  
Review
Osteosarcopenia in NAFLD/MAFLD: An Underappreciated Clinical Problem in Chronic Liver Disease
by Alessandra Musio, Federica Perazza, Laura Leoni, Bernardo Stefanini, Elton Dajti, Renata Menozzi, Maria Letizia Petroni, Antonio Colecchia and Federico Ravaioli
Int. J. Mol. Sci. 2023, 24(8), 7517; https://doi.org/10.3390/ijms24087517 - 19 Apr 2023
Cited by 15 | Viewed by 4860
Abstract
Chronic liver disease (CLD), including non-alcoholic fatty liver disease (NAFLD) and its advanced form, non-alcoholic steatohepatitis (NASH), affects a significant portion of the population worldwide. NAFLD is characterised by fat accumulation in the liver, while NASH is associated with inflammation and liver damage. [...] Read more.
Chronic liver disease (CLD), including non-alcoholic fatty liver disease (NAFLD) and its advanced form, non-alcoholic steatohepatitis (NASH), affects a significant portion of the population worldwide. NAFLD is characterised by fat accumulation in the liver, while NASH is associated with inflammation and liver damage. Osteosarcopenia, which combines muscle and bone mass loss, is an emerging clinical problem in chronic liver disease that is often underappreciated. The reductions in muscle and bone mass share several common pathophysiological pathways; insulin resistance and chronic systemic inflammation are the most crucial predisposing factors and are related to the presence and gravity of NAFLD and to the worsening of the outcome of liver disease. This article explores the relationship between osteosarcopenia and NAFLD/MAFLD, focusing on the diagnosis, prevention and treatment of this condition in patients with CLD. Full article
Show Figures

Figure 1

21 pages, 3390 KiB  
Article
A Fine-Tuning of the Plant Hormones, Polyamines and Osmolytes by Ectomycorrhizal Fungi Enhances Drought Tolerance in Pedunculate Oak
by Marko Kebert, Saša Kostić, Srđan Stojnić, Eleonora Čapelja, Anđelina Gavranović Markić, Martina Zorić, Lazar Kesić and Victor Flors
Int. J. Mol. Sci. 2023, 24(8), 7510; https://doi.org/10.3390/ijms24087510 - 19 Apr 2023
Cited by 15 | Viewed by 2910
Abstract
The drought sensitivity of the pedunculate oak (Quercus robur L.) poses a threat to its survival in light of climate change. Mycorrhizal fungi, which orchestrate biogeochemical cycles and particularly have an impact on the plant’s defense mechanisms and metabolism of carbon, nitrogen, [...] Read more.
The drought sensitivity of the pedunculate oak (Quercus robur L.) poses a threat to its survival in light of climate change. Mycorrhizal fungi, which orchestrate biogeochemical cycles and particularly have an impact on the plant’s defense mechanisms and metabolism of carbon, nitrogen, and phosphorus, are among the microbes that play a significant role in the mitigation of the effects of climate change on trees. The study’s main objectives were to determine whether ectomycorrhizal (ECM) fungi alleviate the effects of drought stress in pedunculate oak and to investigate their priming properties. The effects of two levels of drought (mild and severe, corresponding to 60% and 30% of field capacity, respectively) on the biochemical response of pedunculate oak were examined in the presence and absence of ectomycorrhizal fungi. To examine whether the ectomycorrhizal fungi modulate the drought tolerance of pedunculate oak, levels of plant hormones and polyamines were quantified using UPLC-TQS and HPLC-FD techniques in addition to gas exchange measurements and the main osmolyte amounts (glycine betaine-GB and proline-PRO) which were determined spectrophotometrically. Droughts increased the accumulation of osmolytes, such as proline and glycine betaine, as well as higher polyamines (spermidine and spermine) levels and decreased putrescine levels in both, mycorrhized and non-mycorrhized oak seedlings. In addition to amplifying the response of oak to severe drought in terms of inducible proline and abscisic acid (ABA) levels, inoculation with ECM fungi significantly increased the constitutive levels of glycine betaine, spermine, and spermidine regardless of drought stress. This study found that compared to non-mycorrhized oak seedlings, unstressed ECM-inoculated oak seedlings had higher levels of salicylic (SA) and abscisic acid (ABA) but not jasmonic acid (JA), indicating a priming mechanism of ECM is conveyed via these plant hormones. According to a PCA analysis, the effect of drought was linked to the variability of parameters along the PC1 axe, such as osmolytes PRO, GB, polyamines, and plant hormones such as JA, JA-Ile, SAG, and SGE, whereas mycorrhization was more closely associated with the parameters gathered around the PC2 axe (SA, ODPA, ABA, and E). These findings highlight the beneficial function of the ectomycorrhizal fungi, in particular Scleroderma citrinum, in reducing the effects of drought stress in pedunculate oak. Full article
Show Figures

Figure 1

18 pages, 1632 KiB  
Review
Blood Platelets in Infection: The Multiple Roles of the Platelet Signalling Machinery
by Silvia M. G. Trivigno, Gianni Francesco Guidetti, Silvia Stella Barbieri and Marta Zarà
Int. J. Mol. Sci. 2023, 24(8), 7462; https://doi.org/10.3390/ijms24087462 - 18 Apr 2023
Cited by 15 | Viewed by 4053
Abstract
Platelets are classically recognized for their important role in hemostasis and thrombosis but they are also involved in many other physiological and pathophysiological processes, including infection. Platelets are among the first cells recruited to sites of inflammation and infection and they exert their [...] Read more.
Platelets are classically recognized for their important role in hemostasis and thrombosis but they are also involved in many other physiological and pathophysiological processes, including infection. Platelets are among the first cells recruited to sites of inflammation and infection and they exert their antimicrobial response actively cooperating with the immune system. This review aims to summarize the current knowledge on platelet receptor interaction with different types of pathogens and the consequent modulations of innate and adaptive immune responses. Full article
(This article belongs to the Special Issue Thromboinflammation: An Evolving Multifaceted Concept)
Show Figures

Figure 1

20 pages, 731 KiB  
Review
Detailing Protein-Bound Uremic Toxin Interaction Mechanisms with Human Serum Albumin in the Pursuit of Designing Competitive Binders
by Vida Dehghan Niestanak and Larry D. Unsworth
Int. J. Mol. Sci. 2023, 24(8), 7452; https://doi.org/10.3390/ijms24087452 - 18 Apr 2023
Cited by 15 | Viewed by 2360
Abstract
Chronic kidney disease is the gradual progression of kidney dysfunction and involves numerous co-morbidities, one of the leading causes of mortality. One of the primary complications of kidney dysfunction is the accumulation of toxins in the bloodstream, particularly protein-bound uremic toxins (PBUTs), which [...] Read more.
Chronic kidney disease is the gradual progression of kidney dysfunction and involves numerous co-morbidities, one of the leading causes of mortality. One of the primary complications of kidney dysfunction is the accumulation of toxins in the bloodstream, particularly protein-bound uremic toxins (PBUTs), which have a high affinity for plasma proteins. The buildup of PBUTs in the blood reduces the effectiveness of conventional treatments, such as hemodialysis. Moreover, PBUTs can bind to blood plasma proteins, such as human serum albumin, alter their conformational structure, block binding sites for other valuable endogenous or exogenous substances, and exacerbate the co-existing medical conditions associated with kidney disease. The inadequacy of hemodialysis in clearing PBUTs underscores the significance of researching the binding mechanisms of these toxins with blood proteins, with a critical analysis of the methods used to obtain this information. Here, we gathered the available data on the binding of indoxyl sulfate, p-cresyl sulfate, indole 3-acetic acid, hippuric acid, 3-carboxyl-4-methyl-5-propyl-2-furan propanoic acid, and phenylacetic acid to human serum albumin and reviewed the common techniques used to investigate the thermodynamics and structure of the PBUT–albumin interaction. These findings can be critical in investigating molecules that can displace toxins on HSA and improve their clearance by standard dialysis or designing adsorbents with greater affinity for PBUTs than HSA. Full article
Show Figures

Figure 1

22 pages, 838 KiB  
Review
Pharmacogenomics on the Treatment Response in Patients with Psoriasis: An Updated Review
by Ching-Ya Wang, Chuang-Wei Wang, Chun-Bing Chen, Wei-Ti Chen, Ya-Ching Chang, Rosaline Chung-Yee Hui and Wen-Hung Chung
Int. J. Mol. Sci. 2023, 24(8), 7329; https://doi.org/10.3390/ijms24087329 - 15 Apr 2023
Cited by 15 | Viewed by 4539
Abstract
The efficacy and the safety of psoriasis medications have been proved in trials, but unideal responses and side effects are noted in clinical practice. Genetic predisposition is known to contribute to the pathogenesis of psoriasis. Hence, pharmacogenomics gives the hint of predictive treatment [...] Read more.
The efficacy and the safety of psoriasis medications have been proved in trials, but unideal responses and side effects are noted in clinical practice. Genetic predisposition is known to contribute to the pathogenesis of psoriasis. Hence, pharmacogenomics gives the hint of predictive treatment response individually. This review highlights the current pharmacogenetic and pharmacogenomic studies of medical therapy in psoriasis. HLA-Cw*06 status remains the most promising predictive treatment response in certain drugs. Numerous genetic variants (such as ABC transporter, DNMT3b, MTHFR, ANKLE1, IL-12B, IL-23R, MALT1, CDKAL1, IL17RA, IL1B, LY96, TLR2, etc.) are also found to be associated with treatment response for methotrexate, cyclosporin, acitretin, anti-TNF, anti-IL-12/23, anti-IL-17, anti-PDE4 agents, and topical therapy. Due to the high throughput sequencing technologies and the dramatic increase in sequencing cost, pharmacogenomic tests prior to treatment by whole exome sequencing or whole genome sequencing may be applied in clinical in the future. Further investigations are necessary to manifest potential genetic markers for psoriasis treatments. Full article
(This article belongs to the Special Issue Causes, Molecular Research, and Treatment in Skin Inflammation)
Show Figures

Figure 1

18 pages, 3210 KiB  
Article
Protective Effects of Selenium Nanoparticles against Bisphenol A-Induced Toxicity in Porcine Intestinal Epithelial Cells
by Zaozao Pan, Jiaqiang Huang, Ting Hu, Yonghong Zhang, Lingyu Zhang, Jiaxi Zhang, Defeng Cui, Lu Li, Jing Wang and Qiong Wu
Int. J. Mol. Sci. 2023, 24(8), 7242; https://doi.org/10.3390/ijms24087242 - 14 Apr 2023
Cited by 15 | Viewed by 3298
Abstract
Bisphenol A (BPA) is widely used to harden plastics and polycarbonates and causes serious toxic effects in multiple organs, including the intestines. Selenium, as an essential nutrient element for humans and animals, exhibits a predominant effect in various physiological processes. Selenium nanoparticles have [...] Read more.
Bisphenol A (BPA) is widely used to harden plastics and polycarbonates and causes serious toxic effects in multiple organs, including the intestines. Selenium, as an essential nutrient element for humans and animals, exhibits a predominant effect in various physiological processes. Selenium nanoparticles have attracted more and more attention due to their outstanding biological activity and biosafety. We prepared chitosan-coated selenium nanoparticles (SeNPs) and further compared the protective effects, and investigated the underlying mechanism of SeNPs and inorganic selenium (Na2SeO3) on BPA-induced toxicity in porcine intestinal epithelial cells (IPEC-J2). The particle size, zeta potential, and microstructure of SeNPs were detected by using a nano-selenium particle size meter and a transmission electron microscope. IPEC-J2 cells were exposed to BPA alone or simultaneously exposed to BPA and SeNPs or Na2SeO3. The CCK8 assay was performed to screen the optimal concentration of BPA exposure and the optimal concentration of SeNPs and Na2SeO3 treatment. The apoptosis rate was detected by flow cytometry. Real-time PCR and Western blot methods were used to analyze the mRNA and protein expression of factors related to tight junctions, apoptosis, inflammatory responses and endoplasmic reticulum stress. Increased death and morphological damage were observed after BPA exposure, and these increases were attenuated by SeNPs and Na2SeO3 treatment. BPA exposure disturbed the tight junction function involved with decreased expression of tight junction protein Zonula occludens 1 (ZO-1), occludin, and claudin-1 proteins. Proinflammatory response mediated by the transcription factor nuclear factor-k-gene binding (NF-κB), such as elevated levels of interleukin-1β(IL-1β), interleukin-6 (IL-6), interferon-γ (IFN-γ), interleukin-17 (IL-17), and tumor necrosis factor-α (TNF-α) expression was induced at 6 and 24 h after BPA exposure. BPA exposure also disturbed the oxidant/antioxidant status and led to oxidative stress. IPEC-J2 cell apoptosis was induced by BPA exposure, as indicated by increased BCL-2-associated X protein (Bax), caspase 3, caspase 8, and caspase 9 expression and decreased B-cell lymphoma-2 (Bcl-2) and Bcl-xl expression. BPA exposure activated the endoplasmic reticulum stress (ERS) mediated by the receptor protein kinase receptor-like endoplasmic reticulum kinase (PERK), Inositol requiring enzyme 1 (IRE1α), and activating transcription factor 6 (ATF6). We found that treatment with SeNPs and Na2SeO3 can alleviate the intestinal damage caused by BPA. SeNPs were superior to Na2SeO3 and counteracted BPA-induced tight junction function injury, proinflammatory response, oxidative stress, apoptosis, and ERS stress. Our findings suggest that SeNPs protect intestinal epithelial cells from BPA-induced damage, partly through inhibiting ER stress activation and subsequently attenuating proinflammatory responses and oxidative stress and suppressing apoptosis, thus enhancing the intestinal epithelial barrier function. Our data indicate that selenium nanoparticles may represent an effective and reliable tool for preventing BPA toxicity in animals and humans. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health)
Show Figures

Figure 1

14 pages, 1803 KiB  
Review
H19 Sperm Methylation in Male Infertility: A Systematic Review and Meta-Analysis
by Rossella Cannarella, Andrea Crafa, Federica Barbagallo, Scott D. Lundy, Sandro La Vignera, Rosita A. Condorelli and Aldo E. Calogero
Int. J. Mol. Sci. 2023, 24(8), 7224; https://doi.org/10.3390/ijms24087224 - 13 Apr 2023
Cited by 15 | Viewed by 2923
Abstract
This systematic review and meta-analysis summarize the difference in the methylation of the H19 gene in patients with abnormal versus normal conventional sperm parameters. It also evaluates the effects of age and sperm concentration on H19 methylation in spermatozoa using meta-regression analysis. It [...] Read more.
This systematic review and meta-analysis summarize the difference in the methylation of the H19 gene in patients with abnormal versus normal conventional sperm parameters. It also evaluates the effects of age and sperm concentration on H19 methylation in spermatozoa using meta-regression analysis. It was performed according to the MOOSE guidelines for meta-analyses and Systematic Reviews of Observational Studies and the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P). The quality of the evidence reported in the studies included was assessed using the Cambridge Quality Checklists. A total of 11 articles met our inclusion criteria. Quantitative analysis showed that H19 methylation levels were significantly lower in the group of infertile patients than in fertile controls. The reduction in methylation was much more pronounced in patients with oligozoospermia (alone or associated with other sperm parameter abnormalities) and in those with recurrent pregnancy loss. Meta-regression analysis showed the results to be independent of both patient age and sperm concentration. Therefore, the H19 methylation pattern should be evaluated among couples accessing assisted reproductive techniques (ART), in order to gain prognostic information on ART outcome and offspring health. Full article
Show Figures

Figure 1

21 pages, 5598 KiB  
Article
Flavonoids in Amomum tsaoko Crevost et Lemarie Ameliorate Loperamide-Induced Constipation in Mice by Regulating Gut Microbiota and Related Metabolites
by Yifan Hu, Xiaoyu Gao, Yan Zhao, Shuangfeng Liu, Kailian Luo, Xiang Fu, Jiayi Li, Jun Sheng, Yang Tian and Yuanhong Fan
Int. J. Mol. Sci. 2023, 24(8), 7191; https://doi.org/10.3390/ijms24087191 - 13 Apr 2023
Cited by 15 | Viewed by 3022
Abstract
Amomum tsaoko (AT) is a dietary botanical with laxative properties; however, the active ingredients and mechanisms are still unclear. The active fraction of AT aqueous extract (ATAE) for promoting defecation in slow transit constipation mice is the ethanol-soluble part (ATES). The total flavonoids [...] Read more.
Amomum tsaoko (AT) is a dietary botanical with laxative properties; however, the active ingredients and mechanisms are still unclear. The active fraction of AT aqueous extract (ATAE) for promoting defecation in slow transit constipation mice is the ethanol-soluble part (ATES). The total flavonoids of ATES (ATTF) were the main active component. ATTF significantly increased the abundance of Lactobacillus and Bacillus and reduced the dominant commensals, such as Lachnospiraceae, thereby changing the gut microbiota structure and composition. Meanwhile, ATTF changed the gut metabolites mainly enriched in pathways such as the serotonergic synapse. In addition, ATTF increased the serum serotonin (5-HT) content and mRNA expression of 5-hydroxytryptamine receptor 2A (5-HT2A), Phospholipase A2 (PLA2), and Cyclooxygenase-2 (COX2), which are involved in the serotonergic synaptic pathway. ATTF increased Transient receptor potential A1 (TRPA1), which promotes the release of 5-HT, and Myosin light chain 3(MLC3), which promotes smooth muscle motility. Notably, we established a network between gut microbiota, gut metabolites, and host parameters. The dominant gut microbiota Lactobacillus and Bacillus, prostaglandin J2 (PGJ2) and laxative phenotypes showed the most significant associations. The above results suggest that ATTF may relieve constipation by regulating the gut microbiota and serotonergic synaptic pathway and has great potential for laxative drug development in the future. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1