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Abstract: Alpha-synuclein (α-Syn) is a short presynaptic protein with an active role on synaptic
vesicle traffic and the neurotransmitter release and reuptake cycle. The α-Syn pathology intertwines
with the formation of Lewy Bodies (multiprotein intraneuronal aggregations), which, combined with
inflammatory events, define various α-synucleinopathies, such as Parkinson’s Disease (PD). In this
review, we summarize the current knowledge on α-Syn mechanistic pathways to inflammation, as
well as the eventual role of microbial dysbiosis on α-Syn. Furthermore, we explore the possible
influence of inflammatory mitigation on α-Syn. In conclusion, and given the rising burden of
neurodegenerative disorders, it is pressing to clarify the pathophysiological processes underlying
α-synucleinopathies, in order to consider the mitigation of existing low-grade chronic inflammatory
states as a potential pathway toward the management and prevention of such conditions, with the
aim of starting to search for concrete clinical recommendations in this particular population.

Keywords: alpha-synuclein; inflammation; neuroinflammation; synucleinopathies; Parkinson’s
disease

1. Introduction

Alpha-synuclein (α-Syn) is a monomer that is expressed at different levels, as it seems
to be present not only in nerves—at the presynaptic nerve terminals of both the Central
Nervous System (CNS) and the Peripheral Nervous System (PNS) [1]—but also at the
erythrocytes and immune cells level [2]. Intracellularly, α-Syn can be found in membranes
and in the cytoplasm, as well as in several organelles, such as the nucleus, mitochondria,
endoplasmic reticulum, golgi apparatus, and the endolysosomal system, even though its
role on these organelles still remains unclear [3–11]. This small soluble monomer consists of
140 amino acids encoded by the α-Syn gene on the long arm of human chromosome 4 [12].
Under physiological conditions, α-Syn is thought to be involved in the regulation of synap-
tic vesicle traffic, particularly neurotransmitter release and reuptake [13,14]. Specifically,
α-Syn acts in vesicle priming, fusion, and dilation of exocytotic fusion pores [15]—as il-
lustrated in Figure 1—increasing the local release of calcium (Ca2+), which is critical for
ATP-induced exocytosis [16] and modulates the dopamine transporter (DAT1), regulating
dopamine neurotransmission [17]. Furthermore, α-Syn’s multimeric membrane-bound
state presents molecular chaperone activity, essential to sustaining normal SNARE-complex
formation during aging (demonstrated in Figure 1), as it promotes the folding of synaptic
fusion components called Soluble NSF Attachment Protein REceptors (SNAREs) at the
presynaptic plasma membrane in conjunction with cysteine string protein-alpha/DnaJ
Heat Shock Protein Family (Hsp40) Member C5 (DNAJC5) [18]. Furthermore, in terms
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of its immunomodulatory function, α-Syn seems to be involved in the development of B
lymphocytes and in the regulation of T cells [19], playing different roles in either promot-
ing disease pathogeny (as is the case of PD) and in protecting against proinflammatory
responses or infections [2,20].
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Figure 1. α-Syn’s role in vesicle priming, fusion, and dilation of exocytotic fusion pores and in the
promotion of SNARE-complex assembly.

There is a dynamic balance between the different three-dimensional forms that α-Syn
can undertake, varying from the monomeric and oligomeric forms to the formation of
fibrils, which does not easily occur in a homeostatic environment [21]. Evidence shows,
however, that under pathological conditions (in which an environmental trigger such as
the settlement of a virus or bacterial infections have been hypothesized), α-Syn monomers
can undergo post-translational modifications that cause overexpression and an increase in
intracellular levels, fostering its aggregation and development of toxic α-Syn oligomers
and protofibrils [13,22–24], which subsequently spread throughout the CNS.

Indeed, the gastrointestinal tract or even exposed olfactory neurons have been sug-
gested as possible entry routes for these pathogens [20]. The α-Syn toxic species act through
cell-autonomous mechanisms in addition to non-cell-autonomous ones [25]. The former
may disrupt organelle activity (by increasing oxidative stress or by impairing the ubiquitin-
proteasome machinery and mitochondrial function). This organelle disruption may be
responsible for neuronal cytotoxicity, while the latter may be responsible for inducing
synaptotoxicity and affecting the distribution and activation of synaptic proteins, pre-
venting neurotransmitter exocytosis and neuronal synaptic communication [22,26] and
possibly the recruitment and activation of glial cells (resident immunocompetent cells of
the CNS) [27]. This could ultimately lead to the neurodegeneration cascade [28–30]. In ad-
dition, the perforation of the neuronal plasma membrane is enabled by extracellular α-Syn
oligomers, increasing its conductance and the influx of Ca2+ ions and glucose, partially
supporting the synaptotoxicity observed in α-synucleinopathies [31]. Figure 2 represents
the physiological and pathological paths of α-Syn.
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The transmission of α-Syn pathology spans throughout various brain regions, espe-
cially dopaminergic neurons in the substantia nigra pars compacta (the core site of neu-
rodegeneration in PD), although the full extent of its impact remains largely unknown [32].
Furthermore, α-Syn can be detected as a biomarker in PD patients’ cerebrospinal fluid
(CSF), saliva, serum, urine, and gastrointestinal tract [33–36]. Several studies have also
attempted to measure α-Syn in blood cells and plasma, but so far, the results have been
inconsistent [37].

Indeed, PD is considered to be the most common synucleinopathy [22], and represents
the fastest growing and most significant medical and social burden of our time [38]. The
α-Syn gene was the first gene to be associated with PD, and the knowledge that a single
missense/point mutation or duplications of the gene cause Parkinsonism, especially the au-
tosomal dominant form, supports the strong association between α-Syn and PD [12,39,40].
Nevertheless, it is noteworthy that non-genetic (environmental and idiopathic) factors
appear to be responsible for the vast majority of PD cases [41] and have led to the consider-
ation of the CRISPR/Cas9-mediated technology far beyond in this regard [42,43]. In terms
of its pathological features, PD is characterized by the loss of dopaminergic neurons in
the midbrain region of the substantia nigra pars compacta, resulting in a marked decrease
in dopamine levels in the synaptic terminals, as well as the presence of intraneuronal
dense inclusions of Lewy bodies (aggregations of misfolded α-syn, ubiquitin, complement
proteins, and cytoplasmic structural proteins) in different regions of the brain and body
(substantia nigra pars compacta, cerebral cortex, dorsal nucleus of the vagus nerve, sympa-
thetic ganglia, and myenteric plexus of the gut) [22,44–46]. Overall, PD is a highly systemic
and multifactorial neurodegenerative disease whose motor and non-motor symptoms
(NMSs) have a major impact on patients’ quality of life. [26,45,47,48]. Even though PD is
only diagnosed upon the detection of its progressive cardinal motor symptoms (resting
tremor, muscular rigidity, and bradykinesia), often together with a variety of NMSs [49,50],
a prodromal phase is believed to occur up to 30 years prior to clinical diagnosis, which
includes signs such as hyposmia (olfactory dysfunction), sleep abnormalities (Rapid eye
movement (REM)-sleep behavior disorder), cardiac sympathetic denervation, constipa-
tion, depression, and pain [41,51,52]. During this early prodromal phase of PD, synaptic
alterations occur prior to neuronal death, namely the accumulation of toxic α-Syn in the
presynaptic terminals, affecting neurotransmitter release [22].

In fact, PD presents a multifactorial etiology that remains unclear thus far, even though
it seems to be dependent both on environmental and genetic factors, while encompass-
ing several biological mechanisms such as α-Syn pathology, mitochondrial dysfunction,
oxidative stress, synaptic plasticity, neuroinflammation, chronic systemic inflammation
(translated in the dysregulation of circulating inflammatory cytokines), and even gut and
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periodontal dysbiosis [53,54]. Even though α-Syn dysfunction is a prominent key com-
ponent of PD and other α-synucleinopathies, such as dementia with Lewy bodies (DLB)
and multiple system atrophy (MSA), the reason it accumulates is still an active area of
research [45]. To that end, the intent of this review is to revisit a-Syn pathways to inflam-
mation, aiming to clarify and update the available evidence to date, as well as to promote
further research in the hopes of ultimately establishing future clinical recommendations.

2. α-Syn and Inflammation

Recent evidence from both in vitro and in vivo models report on the major role neu-
roinflammation plays on the pathophysiology of neurodegenerative disorders, including
PD, as it is pivotal factor between PD’s genetic predisposition and environmental expo-
sures [55–59]. In fact, the use of non-steroidal anti-inflammatory drugs appears to reduce
the risk of developing PD [60]. It is known that α-Syn accumulation stands as a key com-
ponent of these neuronal inflammatory patterns, in particular, by modulating microglial
function and upregulating the inflammatory cascade [61]. In detail, toxic α-Syn species
that are translocated intracellularly can trigger microglia hyperactivity, activate astrocytes,
increase the gene expression of proinflammatory factors, and summon peripheral immune
cells to the surroundings of the pre-apoptotic and apoptotic dopaminergic neurons on the
CNS, all of which might induce neuronal dysfunction [22,62,63].

Therefore, alongside peripheral lymphocyte infiltration, there is an in situ increase in
inflammatory mediators such as interleukin (IL)-1β and inflammasome cytosolic nod-like
receptor protein 3 (NLRP3) in PD patients’ CSF and brains [64,65]. The chronic over-
expression of IL-1β at the substantia nigra pars compacta level of mice culminates in
dopaminergic degeneration through glial activation and motor deficits [27]. The same
inflammatory burden was systematically reported in animal studies, with reports of NLRP3
activation in the serum of PD mice, and in human trials with elevated peripheral blood
levels of NLRP3, interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), IL-1β, IL-2, IL-
10, C-Reactive Protein (CRP), and Regulated upon Activation, Normal T Cell Expressed
and Presumably Secreted (RANTES) in PD patients [53,66,67]. This evidence points out
NLRP3 and IL-1β as major inflammatory candidates with serological diagnostic potential
in PD [66,68]. On the one hand, NLRP3 can be activated by toxic α-Syn peripherally and
released in human monocytes and microglial cells [67,69,70], amplifying the inflammatory
response [71], while also secreting IL-1β from peripheral blood mononuclear cells and
microglia [67,69,70]. On the other hand, a rare NLRP3 polymorphism is associated with
decreased PD risk [72]. In sum, inflammogens IL-1β and NLRP3 might be involved in
PD neurodegeneration, onset, and progression [72,73]; however, further research on the
α-syn–inflammasome relationship is warranted.

Furthermore, the IL-6 inflammogen is known for its role in neuropathology and is
thought to present both pro-inflammatory and anti-inflammatory function in PD, with
2.3-fold higher concentration levels at the periphery in PD patients when compared to
controls [74].

3. Microbial Dysbiosis and α-Syn

The microbiota—which consists of thousands of bacterial, viral, and fungal species
that inhabit different parts of the human body—plays a critical role in human health,
not only through its barrier function against pathogens, but also through its regulatory
role of the immune system as well as its impact on other important functions, such as
the regulation of movement [75]. The human gut microbiota in particular has been the
focus of intense research. This microbiota is shaped by lifetime determinants (such as
diet, disease history, age, or genetic heritance) [76,77] and produces a variety of molecules,
some of which can enter the bloodstream and affect overall systemic health [78]. In a
recent cross-sectional study, gut microbiota and plasma metabolites of 8583 participants of
the population-based Swedish CArdioPulmonary bioImage study, with ages comprised
between 50 to 64 years, were studied [79]. Using metagenomics and ultra-high-performance
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liquid chromatography combined with mass spectrometry, Dekkers et al. [79] found that
58% of the individual variance of plasma metabolites were explained by a specific gut
microbiome. Similar results were found by Diener et al. [80], by analyzing 930 blood
metabolites against genetics and gut microbiome variation in 1569 individuals. Overall,
69% of the found associations were the result of sole microbiome interactions, 15% due to
genetic reasons, and 16% a hybrid genomic–microbiome interaction [80].

Therefore, disruptions on microbiota present the potential to lead to broad immune
dysfunction with possible neuronal consequences [45]. Thus, a dysbiotic phenomenon of
the commensal microflora may be a precursor of diseases, especially inflammatory ones, as
is the case of irritable bowel syndrome, periodontitis, liver disease, rheumatoid arthritis,
obesity, diabetes, or even neurological disorders, as is the case of depression, anxiety, and
PD [45,81,82].

The endotoxin lipopolysaccharide (LPS), being the Gram-negative bacteria’s main
membrane component that hampers phagocytosis by immune system cells, stands out
as one of the major bacterial defense mechanisms [45]. Recent evidence based on α-
Syn-induced mice exposed to LPS (intraperitoneally injected) reported cognitive deficits
and enhanced dopaminergic neuronal loss, as α-Syn adopted its fibrillar form, which
suggests that LPS-induced neuroinflammation and the PD-related genetic background
interact synergically [27,83]. Therefore, bacterial exposure may be a driving force in α-
synucleinopathies [84,85]. LPS also induces the expression of chemokines [86–89].

3.1. Gut Microbiota and α-Syn

Recent lines of research have been exploring the potential mechanisms by which
changes in the gut microbiota and their products (such as LPS and intestinal-mucosa-
derived inflammatory factors) might contribute to the misfolding and abnormal aggrega-
tion of α-Syn in the enteric nervous system (ENS), and upon transportation via projections
of the vagus nerve and autonomic enteric fibers, in the CNS [43,77,78]. The transport of
toxic α-Syn species through the microbiota–gut–brain axis ultimately results in the loss
of dopaminergic neurons and causes a microglial inflammatory response that is in the
pathogenesis of α-synucleinopathies [83]. In fact, PD patients appear to present differences
regarding the level of certain species of gut bacteria when compared to healthy coun-
terparts [84–87]. Therefore, it is crucial to highlight the microbiota–gut–brain axis, as it
represents a complex and interdependent network between the ENS, the gut microbiota,
the immune system, and the brain and provides key insights into how intestinal alterations
might affect distant organs, such as the brain [88]. In fact, the gastrointestinal tract’s com-
munication network with the CNS includes pathways such as the systemic circulation
of hormones, inflammatory cytokines, and microbial products, as well as the autonomic
nervous system through the vagus nerve [52]. Interestingly enough, of the non-motor fea-
tures that comprise the prodromal phase of PD—which include gastrointestinal, olfactory
dysfunction, autonomic dysregulation, fatigue, sleep disorders, and mood disturbances—
the early constipation and gastrointestinal inflammation support the involvement of the
microbiota–gut–brain axis [87–91]. However, even though the gut microbiota’s role in neu-
rodegeneration has started to be explored, research on the involvement of oral microbiota
on such mechanisms is still due [87,92].

In a recently conducted study, Shi et al. [90] explored whether mucosal microbiota in
PD patients would correlate with changes in intestinal mucosal a-Syn. To this end, nineteen
PD patients were compared to healthy counterparts for duodenal and sigmoid mucosal
samples with next-generation metagenomic sequencing. Overall, the results showed that
oligomer a-Syn in the sigmoid mucosa is transferred from the epithelial intestinal wall to
the cytoplasm, acinar lumen, and stroma. Furthermore, the intestinal mucosal microbiota
composition changed with the increase in the relative abundance of pro-inflammation
inducing bacteria in the duodenal mucosa [90]. Beyond the unequivocal potential for
diagnosis of PD using such samples, these results show that intestinal microbiota may have
a role in the levels of a-Syn at the intestinal mucosa.
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3.2. Oral Microbiota and α-Syn

There is a clear clinical association between periodontitis and PD that has been cen-
tered on both the progressive installment of motor disturbances and cognitive decline,
which implicate on the patient’s self-care ability and compromises oral hygiene, as well as
fewer dental attendances [54], which ultimately precipitate oral diseases [91–93]. However,
the extent of the existing evidence regarding a concrete α-Syn or other crosstalk biomark-
ers linking periodontitis and PD is sparce and still relies on a bioinformatic genomic
analysis [94,95].

Periodontitis knowingly disturbs systemic health, either through its inflammatory
burden or bacterial blood dissemination [96–99]. In particular, an association between
periodontal inflammation and neurodegenerative conditions has been reported in stud-
ies regarding cognitive function [100,101], dementia [102], and very recently PD [103].
The hypothesis in which an active periodontal infection promotes the secretion of pro-
inflammatory cytokines such as interleukin (IL)-1, IL-6, TNF-α, and reactive oxygen species
(ROS) and might increase the risk of PD has been proposed [104], alongside the fact that
periodontal infection constitutes a new entryway for bacterial translocation in PD [54]. In
addition, not only were Porphyromonas gingivalis and its toxic proteases (gingipains) identi-
fied in the brain of Alzheimer’s disease (AD) patients [55], but an increase in the deposition
of beta amyloid has also been reported in the brain of periodontitis-induced mice models
for AD [105]. The presence of these key periodontal pathogens in distant tissues, and their
association with inflammation, may suggest that the migration of these microorganisms
might cause local inflammatory reactions, and are often related to pathological mechanisms
of major neurological diseases.

We have recently demonstrated a higher prevalence of periodontitis in PD patients [103]
and possible systemic repercussions with the elevation of circulating white blood cell
counts [106] and c-reactive protein [107]. In fact, systemic inflammation caused by peri-
odontitis has been hypothesized to develop chronic neuroinflammation and ultimately
interfere with PD pathogenesis [104]. The chronic pattern of periodontitis may be respon-
sible for sustained local and systemic inflammatory states with unknown consequences
in PD, perhaps suggesting the involvement of a microbiota–mouth–brain axis, and these
results may pinpoint mechanistic clues for future research on the biological mechanisms
and paths. In addition, immunologically different traits and patterns mediated by oral
microbiota might interfere with the pro-inflammatory state in PD, with the individual as
well as horizontal and vertical inheritance having a conceivable role.

The first study to investigate the oral microbiota in PD was based on the hypothesis
that this disease is often characterized by neuropathological changes in olfactory and
gastrointestinal tissues. Therefore, Pereira et al. compared oral and nasal samples from
PD patients with controls [108]. Gene sequencing data revealed a different oral and
nasal microbiota in the abundance of individual bacterial taxa, but without significant
differences in PD patients. Despite the lack of apparent differences, the authors outlined
the potential importance of tracking gut microbiota for potential clinical purposes. Later,
Rozas et al. [109] conducted a similar cross-sectional case–control study, examining the oral
microbiota from hard and soft tissues of PD patients (and matched healthy controls). The
bacterial identification results showed significant differences in soft tissue diversity with
a higher abundance of opportunistic oral pathogens in PD. When potential confounders
were examined, the presence of dysphagia, drooling, and salivary pH emerged as the most
influential. Taken together, these findings revealed novel microbiota differences and clinical
signs that could explain them.

Years later, and with new data pointing to the importance of diet in the pathophys-
iology of PD, Zapała et al. [110] compared the dietary preferences and oral microbiota
profile of PD patients with healthy matched controls. Gene sequencing showed that the
oral microbiota in PD differed from the controls, with a lower abundance of Proteobacteria,
Pastescibacteria, and Tenercutes. On the other hand, a high relative abundance of Prevotella,
Streptococcus, and Lactobaccillus was found. In addition, dietary patterns showed correla-
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tions with microbial taxa, suggesting a possible role of diet in the oral bacterial profile of
PD patients.

In addition, a recent exploratory study examined the composition of oral microbiota
(saliva and subgingival samples) and the level of oral inflammation (by periodontal and
dental examination and quantification of gingival crevicular fluid levels of IL-1β, IL-6, IL-1
receptor antagonist, interferon-γ, and TNF-α) [111]. Both in saliva and subgingival plaque,
the composition of plaque showed different patterns between PD and control subjects [111].
There was a higher abundance of Streptococcus mutans, Kingella oralis, Actinomyces AFQC_s,
Veillonella AFUJ_s, Scardovia, Lactobacillaceae, Negativicutes, and Firmicutes. On the contrary,
there was less abundance of Treponema KE332528_s, Lachnospiraceae AM420052_s, and phy-
lum SR1 [111]. Even though there were no differences between dental and periodontal
statuses among PD and control patients, there was a higher level of IL-1β and IL-1 re-
ceptor antagonists in the gingival crevicular fluid of people with PD, showing a different
inflammatory pattern on the periodontal apparatus.

The apparent specific oral microbiota profiling in PD raised other questions of major
importance regarding the pathophysiological features of this movement disorder. Particu-
larly, Zheng et al. [112] collected oral mucosa samples using a cytological brush from people
with PD and age-matched controls. Immunofluorescence analysis revealed increased α-Syn,
pS129, and oligomeric α-Syn levels in oral mucosa cells of PD patients. While α-Syn species
were distributed intracellularly, pS129 was mainly located in the cytoplasm, and oligomeric
α-Syn in the nucleus and perinuclear cytoplasm. In addition, the oral mucosa α-Syn and
oligomeric α-Syn levels of participants with PD significantly correlated with the clinical
staging of PD, assessed with the Hoehn–Yahr scales.

At that point, several studies were able to identify a distinct gut microbial compo-
sition in PD. Jo et al. [113] furthered the research on the microbiome by studying the
functional alteration of the microbiome in PD. The taxonomic oral and gut microbiome
profile significantly differed between PD patients and healthy controls, with a higher abun-
dance of Lactobacillus and opportunistic pathogens [113]. Functional analysis revealed a
down-regulation of microbial glutamate and arginine biosynthesis gene markers and an
up-regulation of antibiotic resistance gene markers in PD patients compared to healthy
controls [113].

At this stage, research has identified changes in the oral microbiota of PD patients,
with reductions in some bacterial species and increases in others, but without consistent
patterns that may be explained by multiple factors. To this date, we expect the number
of studies investigating this particular issue to increase. This body of knowledge may
contribute to new frontiers in our understanding of how the oral microbiota, which is an
integral part of the gut microbiota, plays a role in PD. On the one hand, these microbial
changes can potentially serve as a non-invasive diagnostic tool for PD. By analyzing the
genetic material of the oral microbiota, researchers can identify specific bacterial species or
gene pathways associated with PD. This information could be used to develop diagnostic
tests that can detect the disease earlier and more accurately than current methods. On the
other hand, gene sequencing of the oral microbiota could also lead to the development
of new treatments for PD. Researchers could identify specific bacterial species or gene
pathways that contribute to the disease and target them with probiotics or other therapies.
These treatments could potentially slow or even halt the progression of PD. While this is
still highly speculative, several lines of evidence point to the key role of the gut microbiota
in the CNS, the so-called gut–brain axis, and this should be a central focus of research in
the coming years.

4. Inflammatory Mitigation and α-Syn

Therefore, and in alignment with recent evidence in which there is a bidirectional
communication system amongst the microbiota, the immune, and the nervous systems
in PD, the possibility that disease settlement and progression could be stopped indirectly
before reaching the brain is revolutionary [45]. In fact, controlling overall cytokine levels
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significantly improves PD’s motor function [114]. In an animal study using a PD mice
model, Manocha et al. explored how neuroinflammation in PD could impact cytokine
changes, neuron loss, gliosis, and behavioral dysfunction [114], and then mice had their
immune response modulated by a calcineurin/NFAT inhibitor. This evokes the urgency for
patients’ global health evaluation, correct clinical diagnosis, and redirection to specialists in
order to manage these chronic inflammatory pathologies with the further goal of preventing
α-synucleinopathies such as PD and other neurodegenerative diseases [27].

It appears to be crucial to address gut inflammation, particularly in cases of bowel
inflammation or periodontal infection. Recent evidence indicates that having poor peri-
odontal health is linked to a higher likelihood of developing PD [104]. Consequently, it is
not only essential to encourage patients to improve their oral hygiene practices, but it is also
vital to provide them with specialized and ongoing medical care, such as dental scaling,
which is the current gold-standard of the non-surgical treatment for periodontitis [115]. By
doing so, it may be possible to achieve a protective effect against PD.

Moreover, there seems to be evidence to suggest that various treatments aimed at mod-
ulating the gut microbiota can have beneficial effects on PD. For example, fecal microbiota
transplantation (FMT) has been shown to have therapeutic potential by restoring the gut
microbiota of PD patients and improving their clinical motor and non-motor symptoms,
including gastrointestinal symptoms such as constipation [116]. Similarly, pre-, post-, and
probiotic therapies have been found to not only affect the clinical scores and some metabolic
parameters (such as hs-CRP and insulin metabolism) in human studies, but also to signifi-
cantly reduce motor impairments related to gait pattern, overall balance, and coordination
of movement in a PD mouse model [117–123]. Additionally, therapeutic interventions in
which the administration of antibiotics is involved have been found to present regulatory
effects on dopaminergic neurotoxicity in the brain [124–127]. Furthermore, vagotomy
procedures have been associated with a decrease in the risk of developing PD, while also
potentially providing neuroprotective effects against PD pathology, which warrants further
exploration [128,129].

5. Conclusions

To this date, neurodegenerative conditions (such as α-synucleinopathies and PD
in particular) are the leading cause of life-limiting disability worldwide. The effects of
the microbiota on the misfolding mechanisms of α-Syn in the ENS, the CNS, and in
inducing chronic inflammatory states seem to play a key role in the pathogenesis of α-
synucleinopathies, even though they are still unclear thus far. In addition, the role of
the oral microbiota—which is an integral part of the gastrointestinal tract—as well as its
dysbiosis, also needs to be considered in the establishment of the microbiota–gut–brain axis.
Therefore, it is urgent to clarify the existing evidence on α-Syn pathways to inflammation,
in the hopes of contributing to the establishment of clear pathological processes, as well as
to consider the mitigation of these low-grade chronic inflammatory states, as a potential
pathway toward the management and prevention of such conditions. Ultimately, the goal
is to establish future clinical and robust recommendations with significant impact in this
current aging population.
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