Special Issue "Recombination in Viruses"


A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Animal Viruses".

Deadline for manuscript submissions: closed (30 April 2011)

Special Issue Editor

Guest Editor
Dr. Matteo Negroni
CNRS-UPR 9002, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg, France
Website: http://www-ibmc.u-strasbg.fr/arn/index.html
E-Mail: m.negroni@ibmc.u-strasbg.fr
Phone: +33 (0)388417006
Fax: +33 (0)388602218

Special Issue Information

Dear Colleagues,

Viruses are in a perpetual arm race with their hosts. Camouflage is a common strategy viruses use to escape to the immune system (either innate or adaptive) of their hosts. This generally translates in a propensity to develop replication strategies that are, at different extents, prone to the insertion of mutations in their genome. Accumulation of mutations is nevertheless limited by the need to maintain viability and its own genetic identity. Keeping the subtle equilibrium between these two contrasting forces is vital for viruses, it often influences their pathogenic potential, and can be at the origin of outbreaks of infection of relevance for public health.

Recombination is an important source of genetic variability in viruses, particularly for viruses possessing an RNA genome. The remarkable power of recombination resides in its ability, in a single infectious cycle, to generate new combinations of mutations. This is important at two regards: one is that recombination does not generate new mutations but reshuffles pre-existing ones, whose compatibility with viral survival has already been established. This is expected to increase the probability of having a viable recombinant progeny. On the other hand, the fact that, in general, several mutations are simultaneously introduced through the recombination process, is expected to favour the opposite outcome: that a high proportion of recombinant products will not be viable. Finally, recombination in concert with natural selection, can be responsible of combining advantageous mutations, as well as removing deleterious ones, by far the most abundant type of mutations found in nature.

For many viruses the generation of recombinant variants has been associated to important moments in the processes of adaptation, gain of pathogenic potential or increased spreading. Here we intend to present several of these cases and to provide an overlook of the implications of recombination for viral evolution from the theoretical standpoint. A life style involving increasing travelling with the result of an extensive intermingling of viruses, the making a reality of intervention strategies (as transgenic crops and gene therapy) often based on the use of viral vectors, all are issues for which an improved understanding of the role of recombination in viral evolution becomes increasingly urgent.

Dr. Matteo Negroni
Guest Editor


  • recombination
  • viruses
  • evolution
  • genetic variability
  • natural selection

Published Papers (6 papers)

by ,  and
Viruses 2011, 3(10), 2006-2024; doi:10.3390/v3102006
Received: 20 September 2011; Accepted: 13 October 2011 / Published: 24 October 2011
Show/Hide Abstract | Cited by 7 | PDF Full-text (291 KB)

by , , ,  and
Viruses 2011, 3(9), 1777-1799; doi:10.3390/v3091777
Received: 8 August 2011; in revised form: 24 August 2011 / Accepted: 5 September 2011 / Published: 23 September 2011
Show/Hide Abstract | Cited by 4 | PDF Full-text (1175 KB) | Supplementary Files

by , , , ,  and
Viruses 2011, 3(9), 1699-1738; doi:10.3390/v3091699
Received: 8 June 2011; in revised form: 18 August 2011 / Accepted: 5 September 2011 / Published: 13 September 2011
Show/Hide Abstract | Cited by 31 | PDF Full-text (3832 KB)

by , , , ,  and
Viruses 2011, 3(9), 1650-1680; doi:10.3390/v3091650
Received: 21 June 2011; in revised form: 18 August 2011 / Accepted: 25 August 2011 / Published: 9 September 2011
Show/Hide Abstract | Cited by 8 | PDF Full-text (4166 KB)

by , , ,  and
Viruses 2011, 3(8), 1460-1484; doi:10.3390/v3081460
Received: 2 June 2011; in revised form: 3 August 2011 / Accepted: 3 August 2011 / Published: 17 August 2011
Show/Hide Abstract | Cited by 15 | PDF Full-text (2734 KB)

by  and
Viruses 2011, 3(8), 1358-1373; doi:10.3390/v3081358
Received: 3 June 2011; in revised form: 12 July 2011 / Accepted: 22 July 2011 / Published: 4 August 2011
Show/Hide Abstract | Cited by 11 | PDF Full-text (135 KB)

Last update: 5 March 2014

Viruses EISSN 1999-4915 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert