E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "New Advances on Zika Virus Research"

A special issue of Viruses (ISSN 1999-4915). This special issue belongs to the section "Animal Viruses".

Deadline for manuscript submissions: 30 September 2018

Special Issue Editors

Guest Editor
Dr. Luis Martinez-Sobrido

Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 672, Rochester, NY 14642, USA
Website | E-Mail
Phone: 585-276-4733
Fax: +1 585 473 9573
Interests: virology; vaccines; antivirals; influenza viruses; arenaviruses; Zika virus; innate immunity; adaptive immunity; virus–host interaction
Guest Editor
Dr. Fernando Almazan Toral

Department of Molecular and Cell Biology, National Center for Biotechnology, Darwin 3, 28049 Madrid, Spain
Website | E-Mail
Phone: 0034 915854561
Interests: virology; virus–host interaction; vaccines; antivirals; coronavirus; flavivirus; Zika virus

Special Issue Information

Dear Colleagues,

Zika virus (ZIKV) is a mosquito-borne member of the Flaviviridae family that has been known to cause sporadic outbreaks in Africa and Southeast Asia. Recently, ZIKV has been associated with Guillain-Barre syndrome and microcephaly in the infants of infected mothers, a condition where infants are born with abnormally-small heads. The explosion of recent pandemics of ZIKV throughout South and Central America, the South Pacific and the Caribbean, and the potential threat to the United States, represent the most recent unexpected arrival of an arthropod-borne viral disease in the Western Hemisphere over the past 20 years. To date, there are no Food and Drug Administration (FDA)-licensed prophylactics (vaccines) or therapeutics (antivirals) available for the treatment of ZIKV disease in humans, which has the potential to affect millions of people worldwide. The significance of ZIKV in human health, together with the limited existing armamentarium to combat ZIKV infection, highlight the importance of developing effective countermeasures to prevent or treat ZIKV infection in humans. In this Special Issue, we will focus on the most recent discoveries in ZIKV research, including the molecular biology of the virus, virus–host interactions, antivirals, and vaccine development.

Dr. Luis Martinez-Sobrido
Dr. Fernando Almazan Toral
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • flavivirus
  • Zika virus (ZIKV)
  • Guillain-Barre syndrome
  • microcephaly
  • ZIKV vaccines
  • ZIKV antivirals
  • molecular biology ZIKV
  • reverse genetics ZIKV
  • ZIKV-host interactions

Published Papers (2 papers)

View options order results:
result details:
Displaying articles 1-2
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Inhibition of Zika Virus Replication by Silvestrol
Viruses 2018, 10(4), 149; doi:10.3390/v10040149
Received: 31 January 2018 / Revised: 22 March 2018 / Accepted: 24 March 2018 / Published: 27 March 2018
PDF Full-text (10548 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The Zika virus (ZIKV) outbreak in 2016 in South America with specific pathogenic outcomes highlighted the need for new antiviral substances with broad-spectrum activities to react quickly to unexpected outbreaks of emerging viral pathogens. Very recently, the natural compound silvestrol isolated from the
[...] Read more.
The Zika virus (ZIKV) outbreak in 2016 in South America with specific pathogenic outcomes highlighted the need for new antiviral substances with broad-spectrum activities to react quickly to unexpected outbreaks of emerging viral pathogens. Very recently, the natural compound silvestrol isolated from the plant Aglaia foveolata was found to have very potent antiviral effects against the (−)-strand RNA-virus Ebola virus as well as against Corona- and Picornaviruses with a (+)-strand RNA-genome. This antiviral activity is based on the impaired translation of viral RNA by the inhibition of the DEAD-box RNA helicase eukaryotic initiation factor-4A (eIF4A) which is required to unwind structured 5´-untranslated regions (5′-UTRs) of several proto-oncogenes and thereby facilitate their translation. Zika virus is a flavivirus with a positive-stranded RNA-genome harboring a 5′-capped UTR with distinct secondary structure elements. Therefore, we investigated the effects of silvestrol on ZIKV replication in A549 cells and primary human hepatocytes. Two different ZIKV strains were used. In both infected A549 cells and primary human hepatocytes, silvestrol has the potential to exert a significant inhibition of ZIKV replication for both analyzed strains, even though the ancestor strain from Uganda is less sensitive to silvestrol. Our data might contribute to identify host factors involved in the control of ZIKV infection and help to develop antiviral concepts that can be used to treat a variety of viral infections without the risk of resistances because a host protein is targeted. Full article
(This article belongs to the Special Issue New Advances on Zika Virus Research)
Figures

Review

Jump to: Research

Open AccessReview Zika Virus in the Male Reproductive Tract
Viruses 2018, 10(4), 198; doi:10.3390/v10040198
Received: 19 March 2018 / Revised: 11 April 2018 / Accepted: 13 April 2018 / Published: 16 April 2018
PDF Full-text (2238 KB) | HTML Full-text | XML Full-text
Abstract
Arthropod-borne viruses (arboviruses) are resurging across the globe. Zika virus (ZIKV) has caused significant concern in recent years because it can lead to congenital malformations in babies and Guillain-Barré syndrome in adults. Unlike other arboviruses, ZIKV can be sexually transmitted and may persist
[...] Read more.
Arthropod-borne viruses (arboviruses) are resurging across the globe. Zika virus (ZIKV) has caused significant concern in recent years because it can lead to congenital malformations in babies and Guillain-Barré syndrome in adults. Unlike other arboviruses, ZIKV can be sexually transmitted and may persist in the male reproductive tract. There is limited information regarding the impact of ZIKV on male reproductive health and fertility. Understanding the mechanisms that underlie persistent ZIKV infections in men is critical to developing effective vaccines and therapies. Mouse and macaque models have begun to unravel the pathogenesis of ZIKV infection in the male reproductive tract, with the testes and prostate gland implicated as potential reservoirs for persistent ZIKV infection. Here, we summarize current knowledge regarding the pathogenesis of ZIKV in the male reproductive tract, the development of animal models to study ZIKV infection at this site, and prospects for vaccines and therapeutics against persistent ZIKV infection. Full article
(This article belongs to the Special Issue New Advances on Zika Virus Research)
Figures

Figure 1

Back to Top