Special Issue "Supramolecular Chemistry and Self-Assembly"

Quicklinks

A special issue of Polymers (ISSN 2073-4360).

Deadline for manuscript submissions: closed (30 June 2013)

Special Issue Editor

Guest Editor
Prof. Dr. Bart Jan Ravoo
Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Correnstrasse 40, Münster 48149, Germany
Website: http://www.uni-muenster.de/Chemie.oc/ravoo/en/ravoo.html
E-Mail: B.J.Ravoo@uni-muenster.de
Interests: Carbohydrate recognition; Microcontact printing; Molecular monolayers; Janus particles; Self-assembly; Vesicles

Special Issue Information

Dear Colleagues,

In recent years, the field of supramolecular chemistry has progressed from rather simple non-covalent complexes of small molecules to increasingly complex and dynamic structures and materials. Also the interplay of supramolecular chemistry and polymer chemistry has witnessed exciting developments. The formation of supramolecular polymers by non-covalent interaction of monomers and the self-assembly of block-copolymers in solution and bulk are two prominent examples. This special issue of Polymers aims to highlight recent advances in the area of molecular recognition and folding of polymers, chirality and controlled growth of supramolecular polymers, smart polymersomes, stimulus-responsive and self-healing polymers, and more.

Prof. Dr. Bart Jan Ravoo
Guest Editor

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed Open Access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs).

Keywords

  • self-assembly
  • molecular recognition
  • multivalent interactions
  • supramolecular chirality
  • supramolecular polymers
  • polyrotaxanes
  • coordination polymers
  • polymersomes
  • responsive materials

Published Papers (8 papers)

Download All Papers
Sort by:
Display options:
Select articles Export citation of selected articles as:
Select/unselect all
Displaying article 1-8
p. 1102-1114
by , , ,  and
Polymers 2013, 5(3), 1102-1114; doi:10.3390/polym5031102
Received: 1 July 2013; in revised form: 5 August 2013 / Accepted: 29 August 2013 / Published: 6 September 2013
Show/Hide Abstract | Cited by 3 | PDF Full-text (1018 KB) | HTML Full-text | XML Full-text | Supplementary Files
(This article belongs to the Special Issue Supramolecular Chemistry and Self-Assembly)
abstract graphic
p. 1041-1055
by ,  and
Polymers 2013, 5(3), 1041-1055; doi:10.3390/polym5031041
Received: 26 June 2013; in revised form: 12 July 2013 / Accepted: 15 July 2013 / Published: 22 July 2013
Show/Hide Abstract | PDF Full-text (755 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Supramolecular Chemistry and Self-Assembly)
p. 937-953
by , , ,  and
Polymers 2013, 5(3), 937-953; doi:10.3390/polym5030937
Received: 6 May 2013; in revised form: 20 June 2013 / Accepted: 20 June 2013 / Published: 4 July 2013
Show/Hide Abstract | Cited by 2 | PDF Full-text (366 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Supramolecular Chemistry and Self-Assembly)
abstract graphic
p. 833-846
by , , , , , , , , ,  and
Polymers 2013, 5(2), 833-846; doi:10.3390/polym5020833
Received: 15 April 2013; in revised form: 15 May 2013 / Accepted: 16 May 2013 / Published: 18 June 2013
Show/Hide Abstract | Cited by 3 | PDF Full-text (969 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Supramolecular Chemistry and Self-Assembly)
p. 576-599
by
Polymers 2013, 5(2), 576-599; doi:10.3390/polym5020576
Received: 1 April 2013; in revised form: 7 May 2013 / Accepted: 8 May 2013 / Published: 22 May 2013
Show/Hide Abstract | Cited by 3 | PDF Full-text (2078 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Supramolecular Chemistry and Self-Assembly)
abstract graphic
p. 527-575
by ,  and
Polymers 2013, 5(2), 527-575; doi:10.3390/polym5020527
Received: 2 April 2013; in revised form: 30 April 2013 / Accepted: 3 May 2013 / Published: 21 May 2013
Show/Hide Abstract | Cited by 2 | PDF Full-text (2704 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Supramolecular Chemistry and Self-Assembly)
abstract graphic
p. 418-430
by , , , , , , , ,  and
Polymers 2013, 5(2), 418-430; doi:10.3390/polym5020418
Received: 18 March 2013; in revised form: 30 April 2013 / Accepted: 3 May 2013 / Published: 16 May 2013
Show/Hide Abstract | Cited by 9 | PDF Full-text (4333 KB) | HTML Full-text | XML Full-text | Supplementary Files
(This article belongs to the Special Issue Supramolecular Chemistry and Self-Assembly)
p. 269-283
by , , , ,  and
Polymers 2013, 5(1), 269-283; doi:10.3390/polym5010269
Received: 2 February 2013; in revised form: 25 February 2013 / Accepted: 25 February 2013 / Published: 6 March 2013
Show/Hide Abstract | PDF Full-text (2267 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Supramolecular Chemistry and Self-Assembly)
Select/unselect all
Displaying article 1-8
Select articles Export citation of selected articles as:

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Type of Paper: Article
Title: Charge-Transfer Complexes Studied by Dynamic Force Spectroscopy
Authors: A. Gomez-Casado, A. Gonzalez-Campo, Y. Zhang, X. Zhang, P. Jonkheijm and J. Huskens
Affiliation: Molecular Nanofabrication and Biophysical Engineering, Department of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands; E-Mail: P.Jonkheijm@utwente.nl
Abstract: In this manuscript, the strength and kinetics of two charge-transfer complexes, naphthol-methylviologen and pyrene-methylviologen, are studied using dynamic force spectroscopy. The dissociation rates indicate an enhanced stability of the pyrene-methylviologen complex, which agrees with its higher thermodynamic stability compared to naphthol-methylviologen complex.

Type of Paper: Review
Title: Metal Coordination and Organometallic Chemistry for Supramolecular Metal Containing Polymers and Nanomaterials
Author: Xiaosong Wang
Affiliation: Department of Chemistry, C2 280, 200 University Ave. W, Waterloo, Ontario, Canada N2L 3G1; E-Mail: xiaosong.wang@uwaterloo.ca
Abstract: Building on established supramolecular chemistry, metal coordination and organometallic chemistry have been widely investigated for their potential application in supramolecular polymers and nanostructures. Increasingly, literature has demonstrated that this is a promising approach for the synthesis of novel materials with functions derived from metal elements and their coordination structures. However, when systems involve multiple non-covalent interactions in addition to metal coordination, unique self-assembly behaviour and unexpected supramolecular strucutres are frequently discovered. Understanding the synergistic effects of non-covalent interactions for the designed synthesis of metal containing assemblies with high structure complexity is a key challenge at the forefront of the field. Recent reports are highlighted in this review in an attempt to illustrate the state of the art of the area and stress the importance to develop controlled chemistry for the synthesis of metal containing assemblies.

Type of Paper: Article
Title: Hybrid, Nanoscale Polymersome/Lipid Membranes
Authors: Seng Koon Lim 1, Jeremy Sanborn 2, Hans-Peter de Hoog 1, Atul Parikh 1,2, Madhavan Nallani 1,3,* and Bo Liedberg 1
Affiliations: 1 Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
2 Departments of Biomedical Engineering, Chemical Engineering and Materials Science, University of California, Davis, CA, USA
3 Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research link, Singapore 117602
Abstract: Hybrid polymersomes, where the polymersome membrane is blended with phospholipids, display interesting self-assembly behavior and incorporate the robustness and chemical versatility of polymersomes, with the softness and biocompatibility of liposomes. Such structures can conveniently be characterized by the formation of giant vesicles formed via electroformation. We were interested to show the behavior of these giant structures correlate with that of nanoscale hybrid polymersomes of the same (initial) composition, an architecture that has so far not been thoroughly investigated. It is shown that the stability and compound release behavior of nanoscale polybutadiene-PEG/POPC hybrid polymersomes can be tuned by the mixing ratio of the amphiphiles, analogous to the way in which the drug-release behavior of phospholipid vesicles can be tuned by ‘pegylation’. In brief, these hybrids provide alternative tools for drug delivery purposes and molecular imaging/sensing applications that clearly warrant further study.
Keywords: polymersomes; hybrid vesicles; self-assembly; drug-delivery; soft matter

Type of Paper: Article
Title: Tetrachloride Transition-metal dianion-induced Ccoordination and Supramolecular self-Assembly of Strontium Dications to Cucurbit8uril
Author: Gang Wei
Affiliation: CSIRO Materials Science and Engineering, Bradfield Road, West Lindfield, PO Box 218, Lindfield, NSW 2070, Australia; Email: gang.wei@csiro.au
Abstract: In the present work, we describe a kind of novel cucurbit8uril-based coordination supramolecular self-assemblies in the presence of tetrachloride transition-metal dianion ([MtransCl4]2-, Mtrans = Cd, Zn, Cu, Co) in the HCl solution. Again the “honeycomb effect” of the tetrachloride transition-metal dianion ([MtransCl4]2- has been observed in the coordination of strontium cations to cucurbit8uril molecules (Q8s). It seems that the [MtransCl4]2− anions form honeycomb structure with hexagonal cells filled with the Sr2+-Q8 linear coordination polymers in which the Sr2+ cations coordinate to Q8 molecules and form zigzag coordination polymers.

Last update: 28 March 2013

Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert