Next Article in Journal
Nanomembranes and Nanofibers from Biodegradable Conducting Polymers
Previous Article in Journal
Synthesis and Solution Properties of Double Hydrophilic Poly(ethylene oxide)-block-poly(2-ethyl-2-oxazoline) (PEO-b-PEtOx) Star Block Copolymers
Previous Article in Special Issue
DNA-Promoted Auto-Assembly of Gold Nanoparticles: Effect of the DNA Sequence on the Stability of the Assemblies
Article Menu

Export Article

Open AccessArticle
Polymers 2013, 5(3), 1102-1114; doi:10.3390/polym5031102

Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

1
Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore
2
Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research link, 117602, Singapore
3
Departments of Biomedical Engineering, Chemical Engineering and Materials Science, University of California, Davis, CA, 95616, USA
*
Authors to whom correspondence should be addressed.
Received: 1 July 2013 / Revised: 5 August 2013 / Accepted: 29 August 2013 / Published: 6 September 2013
(This article belongs to the Special Issue Supramolecular Chemistry and Self-Assembly)
View Full-Text   |   Download PDF [1018 KB, uploaded 6 September 2013]   |  

Abstract

Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs) via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter) of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide) (PB-PEO)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation. View Full-Text
Keywords: polymersomes; hybrid vesicles; self-assembly; drug-delivery; soft matter polymersomes; hybrid vesicles; self-assembly; drug-delivery; soft matter
Figures

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Lim, S.K.; de Hoog, H.-P.; Parikh, A.N.; Nallani, M.; Liedberg, B. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles. Polymers 2013, 5, 1102-1114.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top