E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Radiochemistry"

Quicklinks

A special issue of Pharmaceuticals (ISSN 1424-8247).

Deadline for manuscript submissions: closed (30 May 2012)

Special Issue Editor

Guest Editor
Dr. Svend Borup Jensen

Nuklearmedicinsk Afdeling - Hobrovej 18-22, Postboks 365, 9100 Aalborg, Denmark
Website | E-Mail
Phone: 004597665495
Interests: PET-radiochemistry, gallium-68, drug degradation profiles; medicinal gum; infection imaging, analytical methods; medicinal chemistry

Special Issue Information

Dear Colleagues,

Radiochemistry is the chemistry of radioactive materials. The research interest in this field of chemistry has experienced a big growth during the last decades, driven by a demand of being able to visualize biological processes in the human body. This special issue of Pharmaceuticals, dedicated to radiochemistry, calls for both fundamental and applied contributions in this field of growing academic and industrial interests. Special attention will be paid to paper which has a high degree of novelty, which can contribute to making everyday life easier for radio chemists, which can have a (potential) diagnostic impact or/and which contribute to the understanding of biological processes in vivo.

Dr. Svend Borup Jensen
Guest Editor

Keywords

  • incorporation of radioactive isotopes into biological interesting compounds
  • radioactive labeled compounds metabolic pathway
  • synthesis of precursor and reference materials
  • quality control of radiopharmaceuticals
  • purification technics
  • non-commercial equipment
  • PET molecules
  • SPEC molecules

Related Special Issue

Published Papers (2 papers)

View options order results:
result details:
Displaying articles 1-2
Export citation of selected articles as:

Research

Open AccessArticle Radiosynthesis and Radiotracer Properties of a 7-(2-[18F]Fluoroethoxy)-6-methoxypyrrolidinylquinazoline for Imaging of Phosphodiesterase 10A with PET
Pharmaceuticals 2012, 5(2), 169-188; doi:10.3390/ph5020169
Received: 24 November 2011 / Revised: 18 January 2012 / Accepted: 19 January 2012 / Published: 6 February 2012
Cited by 10 | PDF Full-text (1101 KB) | HTML Full-text | XML Full-text
Abstract
Phosphodiesterase 10A (PDE10A) is a key enzyme of intracellular signal transduction which is involved in the regulation of neurotransmission. The molecular imaging of PDE10A by PET is expected to allow a better understanding of physiological and pathological processes related to PDE10A expression and
[...] Read more.
Phosphodiesterase 10A (PDE10A) is a key enzyme of intracellular signal transduction which is involved in the regulation of neurotransmission. The molecular imaging of PDE10A by PET is expected to allow a better understanding of physiological and pathological processes related to PDE10A expression and function in the brain. The aim of this study was to develop a new 18F-labeled PDE10A ligand based on a 6,7-dimethoxy-4-pyrrolidinylquinazoline and to evaluate its properties in biodistribution studies. Nucleophilic substitution of the 7-tosyloxy-analogue led to the 7-[18F]fluoroethoxy-derivative [18F]IV with radiochemical yields of 25% ± 9% (n = 9), high radiochemical purity of ≥99% and specific activities of 110–1,100 GBq/μmol. [18F]IV showed moderate PDE10A affinity (KD,PDE10A = 14 nM) and high metabolic stability in the brain of female CD-1 mice, wherein the radioligand entered rapidly with a peak uptake of 2.3% ID/g in striatum at 5 min p.i. However, ex vivo autoradiographic and in vivo blocking studies revealed no target specific accumulation and demonstrated [18F]IV to be inapplicable for imaging PDE10A with PET. Full article
(This article belongs to the Special Issue Radiochemistry)
Figures

Open AccessArticle Magnesium-Molybate Compounds as Matrix for 99Mo/99mTc Generators
Pharmaceuticals 2011, 4(2), 215-232; doi:10.3390/ph4020215
Received: 30 November 2010 / Revised: 5 January 2011 / Accepted: 13 January 2011 / Published: 25 January 2011
Cited by 3 | PDF Full-text (906 KB) | HTML Full-text | XML Full-text
Abstract
This work reports the preparation of a 99mTc generator based on conversion of 99Mo produced by neutron irradiation, into insoluble magnesium 99Mo-molybdates compounds as matrix. The effect of magnesium salt types and concentration, Mg:Mo molar ratios, pH of molybdate solutions,
[...] Read more.
This work reports the preparation of a 99mTc generator based on conversion of 99Mo produced by neutron irradiation, into insoluble magnesium 99Mo-molybdates compounds as matrix. The effect of magnesium salt types and concentration, Mg:Mo molar ratios, pH of molybdate solutions, eluate volume as well as the addition order of molybdate and magnesium solutions’ influences on the final 99mTc were evaluated. Polymetalates and polymolybdates salts either crystallized or amorphous were obtained depending on the magnesium salt and Mg:Mo molar ratio used in matrix preparation. 99Mo/99mTc generator production based on magnesium-99Mo molybdate compounds allow reduction of preparation time and eliminates the use of specialized installations. The best generator performances were attained using matrices prepared from 0.1 mol/L MgCl2·6H2O solutions, ammonium molybdate solutions at pH 7 and at a Mg:Mo molar ratio of 1:1. Full article
(This article belongs to the Special Issue Radiochemistry)

Journal Contact

MDPI AG
Pharmaceuticals Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
pharmaceuticals@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Pharmaceuticals
Back to Top