Special Issue "Monoclonal Antibodies"

A special issue of Antibodies (ISSN 2073-4468).

Deadline for manuscript submissions: closed (31 October 2017)

Special Issue Editor

Guest Editor
Dr. Christian Klein

Roche Pharmaceutical Research & Early Development, Switzerland
Website | E-Mail
Interests: immunotherapy of cancer; bispecific antibodies

Special Issue Information

Dear Colleagues,

Monoclonal antibodies are established in clinical practice for the treatment of cancer, and autoimmune and infectious diseases. The first generation of antibodies has been dominated by classical IgG antibodies, however, in the last decade, the field has advanced, and, nowadays, a large proportion of antibodies in development have been engineered.  This Special Issue on "Monoclonal Antibodies" will cover original manuscripts and reviews in the field of the development of classical monoclonal antibodies that address novel biology, as well as progress in the engineering of novel antibody formats, including antibody drug conjugates, bispecific antibodies, and antibody-like scaffolds.

Dr. Christian Klein
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibodies is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 350 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • monoclonal antibodies
  • engineered antibodies
  • bispecific antibodies
  • antibody drug conjugates
  • antibody-like scaffolds

Published Papers (5 papers)

View options order results:
result details:
Displaying articles 1-5
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Epitope Sequences in Dengue Virus NS1 Protein Identified by Monoclonal Antibodies
Antibodies 2017, 6(4), 14; doi:10.3390/antib6040014
Received: 8 August 2017 / Revised: 22 September 2017 / Accepted: 22 September 2017 / Published: 15 October 2017
PDF Full-text (3012 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Dengue nonstructural protein 1 (NS1) is a multi-functional glycoprotein with essential functions both in viral replication and modulation of host innate immune responses. NS1 has been established as a good surrogate marker for infection. In the present study, we generated four anti-NS1 monoclonal
[...] Read more.
Dengue nonstructural protein 1 (NS1) is a multi-functional glycoprotein with essential functions both in viral replication and modulation of host innate immune responses. NS1 has been established as a good surrogate marker for infection. In the present study, we generated four anti-NS1 monoclonal antibodies against recombinant NS1 protein from dengue virus serotype 2 (DENV2), which were used to map three NS1 epitopes. The sequence 193AVHADMGYWIESALNDT209 was recognized by monoclonal antibodies 2H5 and 4H1BC, which also cross-reacted with Zika virus (ZIKV) protein. On the other hand, the sequence 25VHTWTEQYKFQPES38 was recognized by mAb 4F6 that did not cross react with ZIKV. Lastly, a previously unidentified DENV2 NS1-specific epitope, represented by the sequence 127ELHNQTFLIDGPETAEC143, is described in the present study after reaction with mAb 4H2, which also did not cross react with ZIKV. The selection and characterization of the epitope, specificity of anti-NS1 mAbs, may contribute to the development of diagnostic tools able to differentiate DENV and ZIKV infections. Full article
(This article belongs to the Special Issue Monoclonal Antibodies)
Figures

Open AccessArticle Host Cell Proteins in Biologics Manufacturing: The Good, the Bad, and the Ugly
Antibodies 2017, 6(3), 13; doi:10.3390/antib6030013
Received: 17 August 2017 / Revised: 8 September 2017 / Accepted: 10 September 2017 / Published: 16 September 2017
PDF Full-text (3471 KB) | HTML Full-text | XML Full-text
Abstract
Significant progress in the manufacturing of biopharmaceuticals has been made by increasing the overall titers in the USP (upstream processing) titers without raising the cost of the USP. In addition, the development of platform processes led to a higher process robustness. Despite or
[...] Read more.
Significant progress in the manufacturing of biopharmaceuticals has been made by increasing the overall titers in the USP (upstream processing) titers without raising the cost of the USP. In addition, the development of platform processes led to a higher process robustness. Despite or even due to those achievements, novel challenges are in sight. The higher upstream titers created more complex impurity profiles, both in mass and composition, demanding higher separation capacities and selectivity in downstream processing (DSP). This creates a major shift of costs from USP to DSP. In order to solve this issue, USP and DSP integration approaches can be developed and used for overall process optimization. This study focuses on the characterization and classification of host cell proteins (HCPs) in each unit operation of the DSP (i.e., aqueous two-phase extraction, integrated countercurrent chromatography). The results create a data-driven feedback to the USP, which will serve for media and process optimizations in order to reduce, or even eliminate nascent critical HCPs. This will improve separation efficiency and may lead to a quantitative process understanding. Different HCP species were classified by stringent criteria with regard to DSP separation parameters into “The Good, the Bad, and the Ugly” in terms of pI and MW using 2D-PAGE analysis depending on their positions on the gels. Those spots were identified using LC-MS/MS analysis. HCPs, which are especially difficult to remove and persistent throughout the DSP (i.e., “Bad” or “Ugly”), have to be evaluated by their ability to be separated. In this approach, HCPs, considered “Ugly,” represent proteins with a MW larger than 15 kDa and a pI between 7.30 and 9.30. “Bad” HCPs can likewise be classified using MW (>15 kDa) and pI (4.75–7.30 and 9.30–10.00). HCPs with a MW smaller than 15 kDa and a pI lower than 4.75 and higher than 10.00 are classified as “Good” since their physicochemical properties differ significantly from the product. In order to evaluate this classification scheme, it is of utmost importance to use orthogonal analytical methods such as IEX, HIC, and SEC. Full article
(This article belongs to the Special Issue Monoclonal Antibodies)
Figures

Figure 1

Open AccessArticle Functional, Biophysical, and Structural Characterization of Human IgG1 and IgG4 Fc Variants with Ablated Immune Functionality
Antibodies 2017, 6(3), 12; doi:10.3390/antib6030012
Received: 19 July 2017 / Revised: 20 August 2017 / Accepted: 21 August 2017 / Published: 1 September 2017
PDF Full-text (5951 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Engineering of fragment crystallizable (Fc) domains of therapeutic immunoglobulin (IgG) antibodies to eliminate their immune effector functions while retaining other Fc characteristics has numerous applications, including blocking antigens on Fc gamma (Fcγ) receptor-expressing immune cells. We previously reported on a human IgG2 variant
[...] Read more.
Engineering of fragment crystallizable (Fc) domains of therapeutic immunoglobulin (IgG) antibodies to eliminate their immune effector functions while retaining other Fc characteristics has numerous applications, including blocking antigens on Fc gamma (Fcγ) receptor-expressing immune cells. We previously reported on a human IgG2 variant termed IgG2σ with barely detectable activity in antibody-dependent cellular cytotoxicity, phagocytosis, complement activity, and Fcγ receptor binding assays. Here, we extend that work to IgG1 and IgG4 antibodies, alternative subtypes which may offer advantages over IgG2 antibodies. In several in vitro and in vivo assays, the IgG1σ and IgG4σ variants showed equal or even lower Fc-related activities than the corresponding IgG2σ variant. In particular, IgG1σ and IgG4σ variants demonstrate complete lack of effector function as measured by antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, and in vivo T-cell activation. The IgG1σ and IgG4σ variants showed acceptable solubility and stability, and typical human IgG1 pharmacokinetic profiles in human FcRn-transgenic mice and cynomolgus monkeys. In silico T-cell epitope analyses predict a lack of immunogenicity in humans. Finally, crystal structures and simulations of the IgG1σ and IgG4σ Fc domains can explain the lack of Fc-mediated immune functions. These variants show promise for use in those therapeutic antibodies and Fc fusions for which the Fc domain should be immunologically “silent”. Full article
(This article belongs to the Special Issue Monoclonal Antibodies)
Figures

Figure 1

Open AccessArticle Monoclonal Antibodies against Plasmodium falciparum Circumsporozoite Protein
Antibodies 2017, 6(3), 11; doi:10.3390/antib6030011
Received: 10 May 2017 / Revised: 14 June 2017 / Accepted: 1 August 2017 / Published: 23 August 2017
PDF Full-text (2242 KB) | HTML Full-text | XML Full-text
Abstract
Malaria is a mosquito-borne infectious disease caused by the parasite Plasmodium spp. Malaria continues to have a devastating impact on human health. Sporozoites are the infective forms of the parasite inside mosquito salivary glands. Circumsporozoite protein (CSP) is a major and immunodominant protective
[...] Read more.
Malaria is a mosquito-borne infectious disease caused by the parasite Plasmodium spp. Malaria continues to have a devastating impact on human health. Sporozoites are the infective forms of the parasite inside mosquito salivary glands. Circumsporozoite protein (CSP) is a major and immunodominant protective antigen on the surface of Plasmodium sporozoites. Here, we report a generation of specific monoclonal antibodies that recognize the central repeat and C-terminal regions of P. falciparum CSP. The monoclonal antibodies 3C1, 3C2, and 3D3—specific for the central repeat region—have higher titers and protective efficacies against challenge with sporozoites compared with 2A10, a gold standard monoclonal antibody that was generated in early 1980s. Full article
(This article belongs to the Special Issue Monoclonal Antibodies)
Figures

Figure 1

Review

Jump to: Research

Open AccessReview Monoclonal Antibody: A New Treatment Strategy against Multiple Myeloma
Antibodies 2017, 6(4), 18; doi:10.3390/antib6040018
Received: 20 October 2017 / Revised: 9 November 2017 / Accepted: 10 November 2017 / Published: 14 November 2017
PDF Full-text (1485 KB) | HTML Full-text | XML Full-text
Abstract
2015 was a groundbreaking year for the multiple myeloma community partly due to the breakthrough approval of the first two monoclonal antibodies in the treatment for patients with relapsed and refractory disease. Despite early disappointments, monoclonal antibodies targeting CD38 (daratumumab) and signaling lymphocytic
[...] Read more.
2015 was a groundbreaking year for the multiple myeloma community partly due to the breakthrough approval of the first two monoclonal antibodies in the treatment for patients with relapsed and refractory disease. Despite early disappointments, monoclonal antibodies targeting CD38 (daratumumab) and signaling lymphocytic activation molecule F7 (SLAMF7) (elotuzumab) have become available for patients with multiple myeloma in the same year. Specifically, phase 3 clinical trials of combination therapies incorporating daratumumab or elotuzumab indicate both efficacy and a very favorable toxicity profile. These therapeutic monoclonal antibodies for multiple myeloma can kill target cells via antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent phagocytosis, as well as by direct blockade of signaling cascades. In addition, their immunomodulatory effects may simultaneously inhibit the immunosuppressive bone marrow microenvironment and restore the key function of immune effector cells. In this review, we focus on monoclonal antibodies that have shown clinical efficacy or promising preclinical anti-multiple myeloma activities that warrant further clinical development. We summarize mechanisms that account for the in vitro and in vivo anti-myeloma effects of these monoclonal antibodies, as well as relevant preclinical and clinical results. Monoclonal antibody-based immunotherapies have already and will continue to transform the treatment landscape in multiple myeloma. Full article
(This article belongs to the Special Issue Monoclonal Antibodies)
Figures

Figure 1

Back to Top