Next Issue
Previous Issue

Table of Contents

Appl. Sci., Volume 8, Issue 3 (March 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) The figure displays a schematic of a third generation (3G) artificial turf surface used for [...] Read more.
View options order results:
result details:
Displaying articles 1-156
Export citation of selected articles as:
Open AccessArticle Multi-Objective Motion Control Optimization for the Bridge Crane System
Appl. Sci. 2018, 8(3), 473; https://doi.org/10.3390/app8030473
Received: 19 February 2018 / Revised: 17 March 2018 / Accepted: 19 March 2018 / Published: 20 March 2018
PDF Full-text (3584 KB) | HTML Full-text | XML Full-text
Abstract
A novel control algorithm combining the linear quadratic regulator (LQR) control and trajectory planning (TP) is proposed for the control of an underactuated crane system, targeting position adjustment and swing suppression. The TP is employed to control the swing angle within certain constraints,
[...] Read more.
A novel control algorithm combining the linear quadratic regulator (LQR) control and trajectory planning (TP) is proposed for the control of an underactuated crane system, targeting position adjustment and swing suppression. The TP is employed to control the swing angle within certain constraints, and the LQR is applied to achieve anti-disturbance. In order to improve the accuracy of the position control, a differential-integral control loop is applied. The weighted LQR matrices representing priorities of the state variables for the bridge crane motion are searched by the multi-objective genetic algorithm (MOGA). The stability proof is provided in order to validate the effectiveness of the proposed algorithm. Numerous simulation and experimental validations justify the feasibility of the proposed method. Full article
(This article belongs to the Section Computer Science and Electrical Engineering)
Figures

Figure 1

Open AccessArticle Dispersion Properties of an Elliptical Patch with Cross-Shaped Aperture for Synchronized Propagation of Transverse Magnetic and Electric Surface Waves
Appl. Sci. 2018, 8(3), 472; https://doi.org/10.3390/app8030472
Received: 28 February 2018 / Revised: 13 March 2018 / Accepted: 16 March 2018 / Published: 19 March 2018
PDF Full-text (25106 KB) | HTML Full-text | XML Full-text
Abstract
This paper presents a novel pixel geometry for the implementation of metasurfaces requiring synchronized phase propagation of transverse magnetic (TM) and transverse electric (TE) modes. The pixel is composed by an elliptical metallic patch with an asymmetric cross-shaped aperture in the center, printed
[...] Read more.
This paper presents a novel pixel geometry for the implementation of metasurfaces requiring synchronized phase propagation of transverse magnetic (TM) and transverse electric (TE) modes. The pixel is composed by an elliptical metallic patch with an asymmetric cross-shaped aperture in the center, printed on a grounded slab. A practical implementation of a metasurface was carried out employing such a pixel geometry. Simulation results show similar frequency dispersion properties for both modes within the working frequency band, in agreement with the theoretical basis. Full article
(This article belongs to the Special Issue Metasurfaces: Physics and Applications)
Figures

Figure 1

Open AccessArticle Prostate Clinical Outlook Visualization System for Patients and Clinicians Considering Cyberknife Treatment—A Personalized Approach
Appl. Sci. 2018, 8(3), 471; https://doi.org/10.3390/app8030471
Received: 22 February 2018 / Revised: 15 March 2018 / Accepted: 16 March 2018 / Published: 19 March 2018
PDF Full-text (7061 KB) | HTML Full-text | XML Full-text
Abstract
Background: When a patient presents with localized prostate cancer, referral for radiation oncology consultation includes a discussion of likely outcomes of therapy. Among current radiation treatments for prostate cancers, hypo-fractionated stereotactic body radiation therapy (SBRT) has gained clinical acceptance based on efficacy, short
[...] Read more.
Background: When a patient presents with localized prostate cancer, referral for radiation oncology consultation includes a discussion of likely outcomes of therapy. Among current radiation treatments for prostate cancers, hypo-fractionated stereotactic body radiation therapy (SBRT) has gained clinical acceptance based on efficacy, short duration of treatment, and the potential radiobiological advantages. The Prostate Clinical Outlook Visualization System (PCOVS) was developed to provide the patient and the clinician with a tool to visualize probable treatment outcomes using institutional, patient specific data for comparing results of treatment. Methods: We calculated the prostate cancer outcomes—for each prospective patient using the EPIC-26 quality of life parameters based on clinical outcomes data of 580 prostate cancer patients who were treated with SBRT. We applied Kaplan-Meier analysis using the ASTRO definition for biochemical recurrence (BCR) free survival and likely outcome and the PCOVS nomogram to calculate parameters for quality of life. Open-source R, RShiny, and MySQL were used to develop a modularized architecture system. Results: The PCOVS presents patient specific risk scores in a gauge chart style and risk free probability bar plots to compare the treatment data of patients treated with SBRT. The PCOVS generates reports, in PDF, which consists of a comparison charts of risk free probabilities late effects and gauge charts of risk scores. This system is now being expanded as a web-based service to patients. Conclusions: The PCOVS visualized patient specific likely outcomes were compared to treatment data from a single department, helping the patient and the clinician to visualize likely outcomes. The PCOVS approach can be expanded to other specialties of oncology with the flexible, modularized architecture, which can be customized by changing independent modules. Full article
Figures

Figure 1

Open AccessArticle Polyphonic Piano Transcription with a Note-Based Music Language Model
Appl. Sci. 2018, 8(3), 470; https://doi.org/10.3390/app8030470
Received: 18 January 2018 / Revised: 7 March 2018 / Accepted: 16 March 2018 / Published: 19 March 2018
PDF Full-text (2277 KB) | HTML Full-text | XML Full-text
Abstract
This paper proposes a note-based music language model (MLM) for improving note-level polyphonic piano transcription. The MLM is based on the recurrent structure, which could model the temporal correlations between notes in music sequences. To combine the outputs of the note-based MLM and
[...] Read more.
This paper proposes a note-based music language model (MLM) for improving note-level polyphonic piano transcription. The MLM is based on the recurrent structure, which could model the temporal correlations between notes in music sequences. To combine the outputs of the note-based MLM and acoustic model directly, an integrated architecture is adopted in this paper. We also propose an inference algorithm, in which the note-based MLM is used to predict notes at the blank onsets in the thresholding transcription results. The experimental results show that the proposed inference algorithm improves the performance of note-level transcription. We also observe that the combination of the restricted Boltzmann machine (RBM) and recurrent structure outperforms a single recurrent neural network (RNN) or long short-term memory network (LSTM) in modeling the high-dimensional note sequences. Among all the MLMs, LSTM-RBM helps the system yield the best results on all evaluation metrics regardless of the performance of acoustic models. Full article
(This article belongs to the Special Issue Digital Audio and Image Processing with Focus on Music Research)
Figures

Figure 1

Open AccessArticle Evaluation of Fatigue Life of Asphalt Concrete Mixtures with Reclaimed Asphalt Pavement
Appl. Sci. 2018, 8(3), 469; https://doi.org/10.3390/app8030469
Received: 18 January 2018 / Revised: 3 March 2018 / Accepted: 13 March 2018 / Published: 19 March 2018
Cited by 2 | PDF Full-text (6482 KB) | HTML Full-text | XML Full-text
Abstract
The topic of this article is the evaluation of the fatigue life of asphalt concrete mixtures with reclaimed asphalt pavement (RAP). The evaluation was carried out in relation to asphalt concrete mixtures AC22P and high modulus asphalt concrete ACWMS16 with 50% contents of
[...] Read more.
The topic of this article is the evaluation of the fatigue life of asphalt concrete mixtures with reclaimed asphalt pavement (RAP). The evaluation was carried out in relation to asphalt concrete mixtures AC22P and high modulus asphalt concrete ACWMS16 with 50% contents of RAP, greater than currently permitted by technical regulations in Poland. The first stage consisted of the evaluation of laboratory results, which was followed by a mechanistic analysis of the designed life of pavement structures with reclaimed asphalt. The evaluation included the results of laboratory tests (i.e., the air voids content, effective asphalt content, properties of recovered asphalt (penetration, softening point), stiffness, and resistance to fatigue of bituminous mixtures). Calculations of the design life of the structure were made using the criteria according to the 2004 AASHTO specifications for fatigue life and the Asphalt Institute for subgrade deformation. In addition, calculations were carried out using the French method. The analyses allowed for a comprehensive evaluation of the asphalt concrete mixture in the analyzed scope. The evaluation of the fatigue life of AC22P and ACWMS16 mixtures with 50% content of reclaimed asphalt as well as the results of the calculations of design life of the structure indicated positive effects. The tests have been carried out within the framework of the research project dedicated to hot recycling entitled “Reclaimed asphalt pavement: Innovative technology of bituminous mixtures using material from reclaimed asphalt pavement”. Full article
Figures

Figure 1

Open AccessArticle Potential of TCPInSAR in Monitoring Linear Infrastructure with a Small Dataset of SAR Images: Application of the Donghai Bridge, China
Appl. Sci. 2018, 8(3), 425; https://doi.org/10.3390/app8030425
Received: 14 February 2018 / Revised: 6 March 2018 / Accepted: 6 March 2018 / Published: 19 March 2018
PDF Full-text (7896 KB) | HTML Full-text | XML Full-text
Abstract
Reliably monitoring deformation associated with linear infrastructures, such as long-span bridges, is vitally important to assess their structural health. In this paper, we attempt to employ satellite interferometric synthetic aperture radar (InSAR) to map the deformation of Donghai Bridge over a half of
[...] Read more.
Reliably monitoring deformation associated with linear infrastructures, such as long-span bridges, is vitally important to assess their structural health. In this paper, we attempt to employ satellite interferometric synthetic aperture radar (InSAR) to map the deformation of Donghai Bridge over a half of an annual cycle. The bridge, as the fourth longest cross-sea bridge in the world, located in the north of Hangzhou Bay, East China Sea where the featureless sea surface largely occupied the radar image raises challenges to accurately co-register the coherent points along the bridge. To tackle the issues due to co-registration and the limited number of synthetic aperture radar (SAR) images, we adopt the termed temporarily-coherent point (TCP) InSAR (TCPInSAR) technique to process the radar images. TCPs that are not necessarily coherent during the whole observation period can be identified within every two SAR acquisitions during the co-registration procedure based on the statistics of azimuth and range offsets. In the process, co-registration is performed only using the offsets of these TCPs, leading to improved interferometric phases and the local Delaunay triangulation is used to construct point pairs to reduce the atmospheric artifacts along the bridge. With the TCPInSAR method the deformation rate along the bridge is estimated with no need of phase unwrapping. The achieved result reveals that the Donghai Bridge suffered a line-of-sight (LOS) deformation rate up to −2.3 cm/year from January 2009 to July 2009 at the cable-stayed part, which is likely due to the thermal expansion of cables. Full article
Figures

Figure 1

Open AccessArticle Development and Characterization of Two-Dimensional Gratings for Single-Shot X-ray Phase-Contrast Imaging
Appl. Sci. 2018, 8(3), 468; https://doi.org/10.3390/app8030468
Received: 22 December 2017 / Revised: 6 March 2018 / Accepted: 16 March 2018 / Published: 18 March 2018
PDF Full-text (4774 KB) | HTML Full-text | XML Full-text
Abstract
Single-shot grating-based phase-contrast imaging techniques offer additional contrast modalities based on the refraction and scattering of X-rays in a robust and versatile configuration. The utilization of a single optical element is possible in such methods, allowing the shortening of the acquisition time and
[...] Read more.
Single-shot grating-based phase-contrast imaging techniques offer additional contrast modalities based on the refraction and scattering of X-rays in a robust and versatile configuration. The utilization of a single optical element is possible in such methods, allowing the shortening of the acquisition time and increasing flux efficiency. One of the ways to upgrade single-shot imaging techniques is to utilize customized optical components, such as two-dimensional (2D) X-ray gratings. In this contribution, we present the achievements in the development of 2D gratings with UV lithography and gold electroplating. Absorption gratings represented by periodic free-standing gold pillars with lateral structure sizes from 5 µm to 25 µm and heights from 5 µm to 28 µm have shown a high degree of periodicity and defect-free patterns. Grating performance was tested in a radiographic setup using a self-developed quality assessment algorithm based on the intensity distribution histograms. The algorithm allows the final user to estimate the suitability of a specific grating to be used in a particular setup. Full article
(This article belongs to the Special Issue Advanced EUV and X-Ray Optics)
Figures

Figure 1

Open AccessArticle Measuring Identification and Quantification Errors in Spectral CT Material Decomposition
Appl. Sci. 2018, 8(3), 467; https://doi.org/10.3390/app8030467
Received: 4 February 2018 / Revised: 13 March 2018 / Accepted: 16 March 2018 / Published: 18 March 2018
PDF Full-text (7683 KB) | HTML Full-text | XML Full-text
Abstract
Material decomposition methods are used to identify and quantify multiple tissue components in spectral CT but there is no published method to quantify the misidentification of materials. This paper describes a new method for assessing misidentification and mis-quantification in spectral CT. We scanned
[...] Read more.
Material decomposition methods are used to identify and quantify multiple tissue components in spectral CT but there is no published method to quantify the misidentification of materials. This paper describes a new method for assessing misidentification and mis-quantification in spectral CT. We scanned a phantom containing gadolinium (1, 2, 4, 8 mg/mL), hydroxyapatite (54.3, 211.7, 808.5 mg/mL), water and vegetable oil using a MARS spectral scanner equipped with a poly-energetic X-ray source operated at 118 kVp and a CdTe Medipix3RX camera. Two imaging protocols were used; both with and without 0.375 mm external brass filter. A proprietary material decomposition method identified voxels as gadolinium, hydroxyapatite, lipid or water. Sensitivity and specificity information was used to evaluate material misidentification. Biological samples were also scanned. There were marked differences in identification and quantification between the two protocols even though spectral and linear correlation of gadolinium and hydroxyapatite in the reconstructed images was high and no qualitative segmentation differences in the material decomposed images were observed. At 8 mg/mL, gadolinium was correctly identified for both protocols, but concentration was underestimated by over half for the unfiltered protocol. At 1 mg/mL, gadolinium was misidentified in 38% of voxels for the filtered protocol and 58% of voxels for the unfiltered protocol. Hydroxyapatite was correctly identified at the two higher concentrations for both protocols, but mis-quantified for the unfiltered protocol. Gadolinium concentration as measured in the biological specimen showed a two-fold difference between protocols. In future, this methodology could be used to compare and optimize scanning protocols, image reconstruction methods, and methods for material differentiation in spectral CT. Full article
(This article belongs to the Special Issue Hyper- and Multi-Spectral Imaging)
Figures

Figure 1

Open AccessArticle An Interference Cancellation Scheme for High Reliability Based on MIMO Systems
Appl. Sci. 2018, 8(3), 466; https://doi.org/10.3390/app8030466
Received: 9 February 2018 / Revised: 5 March 2018 / Accepted: 16 March 2018 / Published: 18 March 2018
PDF Full-text (1109 KB) | HTML Full-text | XML Full-text
Abstract
This article proposes a new interference cancellation scheme in a half-duplex based two-path relay system. In the conventional two-path relay system, inter-relay-interference (IRI) which severely degrades the error performances at a destination occurs because a source and a relay transmit signals simultaneously at
[...] Read more.
This article proposes a new interference cancellation scheme in a half-duplex based two-path relay system. In the conventional two-path relay system, inter-relay-interference (IRI) which severely degrades the error performances at a destination occurs because a source and a relay transmit signals simultaneously at a specific time. The proposed scheme removes the IRI at a relay for higher signal-to-interference plus noise ratio (SINR) to receive interference free signal at a destination, unlike the conventional relay system, which removes IRI at a destination. To handle the IRI, the proposed scheme uses multiple-input multiple-output (MIMO) signal detection at the relays and it makes low-complexity signal processing at a destination which is a usually mobile user. At the relays, the proposed scheme uses the low-complexity QR decomposition-M algorithm (QRD-M) to optimally remove the IRI. Also, for obtaining diversity gain, the proposed scheme uses cyclic delay diversity (CDD) to transmit the signals at a source and the relays. In simulation results, the error performance for the proposed scheme is better when the distance between one relay and another relay is low unlike the conventional scheme because the QRD-M detects received signal in order of higher post signal-to-noise ratio (SNR). Full article
(This article belongs to the Section Computer Science and Electrical Engineering)
Figures

Figure 1

Open AccessArticle NMR-MPar: A Fault-Tolerance Approach for Multi-Core and Many-Core Processors
Appl. Sci. 2018, 8(3), 465; https://doi.org/10.3390/app8030465
Received: 14 February 2018 / Revised: 12 March 2018 / Accepted: 12 March 2018 / Published: 17 March 2018
PDF Full-text (2323 KB) | HTML Full-text | XML Full-text
Abstract
Multi-core and many-core processors are a promising solution to achieve high performance by maintaining a lower power consumption. However, the degree of miniaturization makes them more sensitive to soft-errors. To improve the system reliability, this work proposes a fault-tolerance approach based on redundancy
[...] Read more.
Multi-core and many-core processors are a promising solution to achieve high performance by maintaining a lower power consumption. However, the degree of miniaturization makes them more sensitive to soft-errors. To improve the system reliability, this work proposes a fault-tolerance approach based on redundancy and partitioning principles called N-Modular Redundancy and M-Partitions (NMR-MPar). By combining both principles, this approach allows multi-/many-core processors to perform critical functions in mixed-criticality systems. Benefiting from the capabilities of these devices, NMR-MPar creates different partitions that perform independent functions. For critical functions, it is proposed that N partitions with the same configuration participate of an N-modular redundancy system. In order to validate the approach, a case study is implemented on the KALRAY Multi-Purpose Processing Array (MPPA)-256 many-core processor running two parallel benchmark applications. The traveling salesman problem and matrix multiplication applications were selected to test different device’s resources. The effectiveness of NMR-MPar is assessed by software-implemented fault-injection. For evaluation purposes, it is considered that the system is intended to be used in avionics. Results show the improvement of the application reliability by two orders of magnitude when implementing NMR-MPar on the system. Finally, this work opens the possibility to use massive parallelism for dependable applications in embedded systems. Full article
(This article belongs to the Section Computer Science and Electrical Engineering)
Figures

Figure 1

Open AccessArticle Kinematics and Dynamics Analysis of a 3-DOF Upper-Limb Exoskeleton with an Internally Rotated Elbow Joint
Appl. Sci. 2018, 8(3), 464; https://doi.org/10.3390/app8030464
Received: 22 February 2018 / Revised: 13 March 2018 / Accepted: 13 March 2018 / Published: 17 March 2018
PDF Full-text (10845 KB) | HTML Full-text | XML Full-text
Abstract
The contradiction between self-weight and load capacity of a power-assisted upper-limb exoskeleton for material hanging is unresolved. In this paper, a non-anthropomorphic 3-degree of freedom (DOF) upper-limb exoskeleton with an internally rotated elbow joint is proposed based on an anthropomorphic 5-DOF upper-limb exoskeleton
[...] Read more.
The contradiction between self-weight and load capacity of a power-assisted upper-limb exoskeleton for material hanging is unresolved. In this paper, a non-anthropomorphic 3-degree of freedom (DOF) upper-limb exoskeleton with an internally rotated elbow joint is proposed based on an anthropomorphic 5-DOF upper-limb exoskeleton for power-assisted activity. The proposed 3-DOF upper-limb exoskeleton contains a 2-DOF shoulder joint and a 1-DOF internally rotated elbow joint. The structural parameters of the 3-DOF upper-limb exoskeleton were determined, and the differences and singularities of the two exoskeletons were analyzed. The workspace, the joint torques and the power consumption of two exoskeletons were analyzed by kinematics and dynamics, and an exoskeleton prototype experiment was performed. The results showed that, compared with a typical anthropomorphic upper-limb exoskeleton, the non-anthropomorphic 3-DOF upper-limb exoskeleton had the same actual workspace; eliminated singularities within the workspace; improved the elbow joint force situation; and the maximum elbow joint torque, elbow external-flexion/internal-extension and shoulder flexion/extension power consumption were significantly reduced. The proposed non-anthropomorphic 3-DOF upper-limb exoskeleton can be applied to a power-assisted upper-limb exoskeleton in industrial settings. Full article
(This article belongs to the Section Mechanical Engineering)
Figures

Figure 1

Open AccessArticle Extraction of Coal and Gangue Geometric Features with Multifractal Detrending Fluctuation Analysis
Appl. Sci. 2018, 8(3), 463; https://doi.org/10.3390/app8030463
Received: 18 February 2018 / Revised: 14 March 2018 / Accepted: 15 March 2018 / Published: 17 March 2018
PDF Full-text (3482 KB) | HTML Full-text | XML Full-text
Abstract
The separation of coal and gangue is an important process of the coal preparation technology. The conventional way of manual selection and separation of gangue from the raw coal can be replaced by computer vision technology. In the literature, research on image recognition
[...] Read more.
The separation of coal and gangue is an important process of the coal preparation technology. The conventional way of manual selection and separation of gangue from the raw coal can be replaced by computer vision technology. In the literature, research on image recognition and classification of coal and gangue is mainly based on the grayscale and texture features of the coal and gangue. However, there are few studies on characteristics of coal and gangue from the perspective of their outline differences. Therefore, the multifractal detrended fluctuation analysis (MFDFA) method is introduced in this paper to extract the geometric features of coal and gangue. Firstly, the outline curves of coal and gangue in polar coordinates are detected and achieved along the centroid, thereby the multifractal characteristics of the series are analyzed and compared. Subsequently, the modified local singular spectrum widths Δ h of the outline curve series are extracted as the characteristic variables of the coal and gangue for pattern recognition. Finally, the extracted geometric features by MFDFA combined with the grayscale and texture features of the images are compared with other methods, indicating that the recognition rate of coal gangue images can be increased by introducing the geometric features. Full article
(This article belongs to the Special Issue Fractal Based Information Processing and Recognition)
Figures

Figure 1

Open AccessArticle Plasmonic Filter and Demultiplexer Based on Square Ring Resonator
Appl. Sci. 2018, 8(3), 462; https://doi.org/10.3390/app8030462
Received: 18 February 2018 / Revised: 12 March 2018 / Accepted: 15 March 2018 / Published: 17 March 2018
PDF Full-text (2654 KB) | HTML Full-text | XML Full-text
Abstract
A ring resonator is a basic component of traditional photonic integrated circuits (PIC), which has been, however, found difficult to be applied efficiently in high-compact plasmonic metal-insulator-metal (MIM) systems. Here, based on a plasmonic band-stop filter with a square ring resonator (SRR), a
[...] Read more.
A ring resonator is a basic component of traditional photonic integrated circuits (PIC), which has been, however, found difficult to be applied efficiently in high-compact plasmonic metal-insulator-metal (MIM) systems. Here, based on a plasmonic band-stop filter with a square ring resonator (SRR), a novel side-coupling method is introduced both numerically and theoretically to achieve a drop in the resonant wavelength in the SRR with considerable efficiency. By introducing the reflector structure, the performance can be appreciably improved. Besides, this structure also has potential for sensing and switching. Finally, a dual demultiplexer based on SRRs is realized at telecommunication wavelengths with comparable performance, which makes it possible to apply ring resonators in on-chip plasmonic wavelength division multiplex (WDM) networks. This work is valuable for PIC design, and will promote the on-chip plasmonic system progress. Full article
(This article belongs to the Special Issue Integrated Photonic and Plasmonic Devices Based on Slot Waveguides)
Figures

Figure 1

Open AccessArticle Parameters Studies on Surface Initiated Rolling Contact Fatigue of Turnout Rails by Three-Level Unreplicated Saturated Factorial Design
Appl. Sci. 2018, 8(3), 461; https://doi.org/10.3390/app8030461
Received: 21 January 2018 / Revised: 1 March 2018 / Accepted: 15 March 2018 / Published: 17 March 2018
PDF Full-text (5265 KB) | HTML Full-text | XML Full-text
Abstract
Surface initiated rolling contact fatigue (RCF), mainly characterized by cracks and material stripping, is a common type of damage to turnout rails, which can not only shorten service life of turnout but also lead to poor running safety of vehicle. The rail surface
[...] Read more.
Surface initiated rolling contact fatigue (RCF), mainly characterized by cracks and material stripping, is a common type of damage to turnout rails, which can not only shorten service life of turnout but also lead to poor running safety of vehicle. The rail surface initiated RCF of turnouts is caused by a long-term accumulation, the size and distribution of which are related to the dynamic parameters of the complicated vehicle-turnout system. In order to simulate the accumulation of rail damage, some random samples of dynamic parameters significantly influencing it should be input. Based on the three-level unreplicated saturated factorial design, according to the evaluation methods of H, P and B statistic values, six dynamic parameters that influence the rail surface initiated RCF in turnouts, namely running speed of vehicle, axle load, wheel-rail profiles, integral vertical track stiffness and wheel-rail friction coefficient, are obtained by selecting 13 dynamic parameters significantly influencing the dynamic vehicle-turnout interaction as the analysis factors, considering four dynamic response results, i.e., the normal wheel-rail contact force, longitudinal creep force, lateral creep force and wheel-rail contact patch area as the observed parameters. In addition, the rail surface initiated RCF behavior in turnouts under different wheel-rail creep conditions is analyzed, considering the relative motion of stock/switch rails. The results show that the rail surface initiated RCF is mainly caused by the tangential stress being high under small creep conditions, the normal and tangential stresses being high under large creep conditions, and the normal stress being high under pure spin creep conditions. Full article
(This article belongs to the Section Mechanical Engineering)
Figures

Figure 1

Open AccessEditorial Special Issue on Solid State Lasers Materials, Technologies and Applications
Appl. Sci. 2018, 8(3), 460; https://doi.org/10.3390/app8030460
Received: 13 March 2018 / Revised: 15 March 2018 / Accepted: 15 March 2018 / Published: 17 March 2018
PDF Full-text (155 KB) | HTML Full-text | XML Full-text
Abstract
Even though more than half a century has already passed since the first demonstration of laser action in ruby crystal, solid-state lasers are still a hot research topic.[...] Full article
Back to Top