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Featured Application: The specific application of the research aims to the port transportation,
the working efficiency can be improved considering findings of this article.

Abstract: A novel control algorithm combining the linear quadratic regulator (LQR) control
and trajectory planning (TP) is proposed for the control of an underactuated crane system,
targeting position adjustment and swing suppression. The TP is employed to control the swing angle
within certain constraints, and the LQR is applied to achieve anti-disturbance. In order to improve
the accuracy of the position control, a differential-integral control loop is applied. The weighted LQR
matrices representing priorities of the state variables for the bridge crane motion are searched by the
multi-objective genetic algorithm (MOGA). The stability proof is provided in order to validate the
effectiveness of the proposed algorithm. Numerous simulation and experimental validations justify
the feasibility of the proposed method.

Keywords: anti-disturbance; bridge crane system; linear quadratic regulator (LQR); multi-objective
genetic optimization (MOGA); trajectory planning

1. Introduction

Nowadays, the development of port transportation brings with it increasing demands of cargo
movement. The bridge crane system is widely applied in order to move the cargo with less cost
compared to other transit systems [1]. For the crane system, it is imperative to design an effective
controller that can achieve fast and safe cargo movement.

For the cargo movement control, in addition to satisfying the target position, some constraints
and disturbances need to be properly dealt with, including maximum moving speed and distance,
maximum swing angle, etc. Focusing on these practical challenges, the designed controller should
satisfy the demands, including fast response, high robustness, and stability, as well as strong
anti-disturbance. Among them, the most important task is to regulate the crane to the desired position,
and meanwhile to suppress the payload swing. In terms of this, the traditional control methods can be
divided into two categories, i.e., open loop and closed loop methods.

For open loop control methods, the control commands are determined in advance according
to the requirements before operation. The popular methods include input shaping control [2,3],
trajectory planning (TP) control [4,5], etc. The input shaping control is imposed in order to produce
a series of pulses according to the ratio between the system frequency and the damping; then,
the convolution between the pulse and the reference trajectory is conducted in order to generate the
control command. This method can guarantee the control performance for the crane position when
the cable length changes, whereas the residual swing of the payload cannot be eliminated. By TP,
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the crane trajectory can be designed based on the nonlinear coupling relationship between the crane
position and the swing angle, thereby ensuring the cargo’s safety when moving and suppressing the
residual oscillation. Both methods can satisfy the controlling target. However, when the system is
under external disturbance, such as wind and human touch, the payload oscillation can be potentially
triggered, and yet cannot be eliminated effectively based on the open loop methods.

In order to overcome the influence of the external disturbance, various closed loop methods
are proposed, which can be divided into adaptive control [6–8], fuzzy logic-based control [9,10],
genetic algorithms (GA) [11,12], feedback linearization control [13,14], linear quadratic regulator (LQR)
control [15–17], proportional–integral–differential (PID) control [18–20], etc. In [21], Zhang and He
considered the crane velocity, the position error, and the swing angle totally in a linearized manner,
and an adaptive sliding mode controller is designed. However, the convergence and boundedness
proof of the position error and swing angle are not given. Based on linearization, the PID control
algorithm, regulated by the fuzzy logic algorithm, is employed in order to improve the crane’s
transient performance and robustness. Since the GA is capable of finding the optimal solutions,
a nonlinear control algorithm is proposed based on a real-time GA in order to solve the difficulty
of regulating the control gain [12,22–24]. In this manner, the whole control performance of the crane
system is improved. Actually, it is difficult for the GA algorithm to ensure the stability strictly at the
equilibrium point theoretically, and the controller design is relatively complex, bringing inconvenience
for practical application.

For sake of reducing the controller complexity and easily applying it in actual operation,
the feedback linearization control algorithm is introduced based on the simplified crane model,
which divides the crane motion and the payload swing into two subsystems [25–28]. A nonlinear
coupling control method is designed to ensure that the crane position and the payload swing can
finally converge to specified ranges. Based on the model linearization, the LQR method is harnessed
to achieve the control using the feedback gain of the linear systems [29]. Although the LQR method is
simple and highly efficient, the system states can possibly deviate from the equilibrium points when
the system is disturbed by external signals, and thus, it is difficult to guarantee the stability of the
control performance. To solve this problem, the constraint of the payload swing and the capability
of anti-disturbances need to be taken into account, and some combined algorithms of open loop
and closed loop methods are introduced [30–32]. In [30], Blajer and Kołodziejczyk employed the
feedforward control and the feedback PID control together, according to the inverse dynamics analysis.
However, this method lacks the stability analysis, and it is difficult to satisfy the demand of the payload
angle and crane position simultaneously with the PID control.

Aiming at these considerations, a combined open loop and closed loop method is herein proposed
to satisfy the constraint of the payload swing, and precisely realize the position control of the crane.
First, the motion path of the crane is designed by TP, which keeps the payload swing states in
the vicinity of the equilibrium point due to the underactuated characteristics. By this manner,
the constraints of the swing angle can be satisfied, and the residual swing can be eliminated. Then,
an updated LQR algorithm is introduced to improve the precision of the crane position and the payload
swing control, which are immune from external disturbance. Here, for the sake of the multi-freedom
control for the crane position, a differential and integral control loop is added to track the crane
position with fast speed. In order to gain preferable control effects, a multi-objective GA (MOGA)
algorithm is employed to achieve the different motion state optimization by searching the weighed
matrices of the LQR [33]. The MOGA is characterized by the weight of the multi-objective functions
being assigned randomly; thus, its search direction is not fixed. A set of Pareto optimal solutions can
be retained and uniformly distributed during implementation [34,35]. By this manner, the MOGA
exhibits the advantage of the diversity of solutions, and meanwhile, the computational complexity
is lower compared with the traditional GA [36,37]. Finally, the quasioptimal control of the crane is
reached by simulation and experiment validation.
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The remainder of this paper is structured as follows. The detailed modeling and associated
constraints are introduced in Section 2. The controller design and its stability proof are provided in
Section 3. The feasibility of the proposed method is verified by the simulation and experiments in
Sections 4 and 5, respectively. Finally, conclusions are drawn in Section 6.

2. Dynamic Modeling of the Crane System

In order to design an algorithm with the target of precise position control and anti-disturbance,
the physical model of the two-dimensional (2D) underactuated system is established, as shown in
Figure 1. In order to simplify the modeling, some assumptions are made.
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Figure 1. Crane physical model.

Assumption 1. The crane is a rigid driving system, and the payload is assumed to be a rigid body. Additionally,
the air friction is neglected.

Assumption 2. The cable length is unchanged.

Assumption 3. The payload swing angle θ satisfies −π/2 < θ(t) < π/2.

With these assumptions, dynamic equations can be formulated [32]:

(mT + mP)
..
xT + mPL

..
θ cos θ −mPL

.
θ

2
sin θ = F (1)

..
xT cos θ + L

..
θ + g sin θ = 0 (2)

where xP is the horizontal position of the payload, xT is the crane horizontal position, L is the cable
length, mT and mP are the mass of the crane and payload, respectively, g presents the gravity factor,
and F is the driving force. Through the geometric operation and analysis, the payload position xP can
be obtained:

xP = xT + l sin θ (3)

It can be found that due to the underactuated characteristics, the payload swing cannot be
designed directly, and instead it can be planned by the coupling relationship between the crane
and the payload. From Equation (2), we can provide the theoretical analysis for the subsequent
control methods.

During the process of the actual transportation, the payload swing should be imposed within the
small angle, i.e.,: 

sin θ ≈ θ

cos θ ≈ 1
.
L =

..
L ≈ 0

(4)
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According to Equations (2) and (4), the dynamic equations can be simplified as:

..
xT + L

..
θ + gθ = 0 (5)

In order to fully consider the Stribeck effect, the friction, and the crane mass,
..
xT is selected as the

control command. Now, the matrix equation of model can be established according to Equation (5):

.
X =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 −g/L 0

X +


0
1
0
−1/L

u

Y =
[

1 1 1 1
]

X

(6)

where X = [xT ,
.
xT , θ,

.
θ]

T
is the state matrix of the bridge crane, T states the matrix transposition,

and u(t) =
..
xT denotes the crane acceleration.

Aiming to satisfy the real-world requirement, three constraints are considered.

Constraint 1. The crane is required to reach the target position xd ∈ R within a limited time ttotal :

xT(t) = xd, ∀t ≤ ttotal (7)

Constraint 2. The velocity and acceleration of the crane should be restricted due to the actual limitation
of actuators: ∣∣ .

xT(t)
∣∣ ≤ vlim,

∣∣ ..xT(t)
∣∣ ≤ alim (8)

Constraint 3. The maximum swing angle of the payload should be bounded:

|θ(t)| ≤ θlim (9)

where vlim, alim ∈ R are defined as the maximum velocity and maximum acceleration, respectively,
and θlim ∈ R+ is the limited maximum swing angle.

Next, the corresponding controller design is detailed in the following section.

3. Control Design

In this paper, a LQR algorithm based on the TP is proposed for the 2D underactuated system with
the target of minimizing the regulating time and guaranteeing the swing angle under the constraints.
The flowchart of the overall controller design is shown in Figure 2.
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As can be seen in Figure 2, the whole control framework consists of four parts, namely:
the trajectory planning, the LQR controller, the crane model, and the MOGA algorithm. First, according
to the desired position, the planning trajectory of the crane motion is planned in advance. Then,
the modified LQR algorithm, which combines the differential and integral controllers, is implemented
to control the bridge crane system with the help of the designed trajectory. The weighted matrixes of
the improved LQR controller are determined based on the MOGA, with the target of minimizing the
integration of the time-weighted absolute value of the errors (ITAEs) for the payload swing and the
crane position. By this manner, the control merits of the TP and LQR can be combined to better reach
the control target.

3.1. Trajectory Planning Control

Based on the geometrical analysis, an efficient trajectory imposed by Constraints 1 to 3 can be
acquired. The second-order ordinary differential equation and its derivative equation are solved based
on Equation (5):

θ(t) = θ(t0) cos ωnt +

.
θ(t0)

ωn
sin ωnt− a

g
(1− cos ωnt) (10)

.
θ(t) = −θ(t0)ωn sin ωnt +

.
θ(t0) cos ωnt− ωna

g
sin ωnt (11)

where ωn =
√

g/L, a =
..
xT , θ(t0) and

.
θ(t0) denote the initial swing and the angle velocity of the

payload, respectively.
Since the payload does not oscillate at the initial motion point, θ(t0) and

.
θ(t0) equal zero. Based on

Equations (10) and (11), we can get: [
θ(t) +

a
g

]2
+

.
Φ

2
(t) =

[
a
g

]2
(12)

where
.

Φ(t) =
.
θ(t)/ωn.

Now, the phase plane is employed in terms of Equation (12) for further analysis, of which
.

Φ(t)
and θ(t) refer to the longitudinal coordinate and the horizontal coordinate, respectively, as shown in
Figure 3. To implement the intuitive illustration, the following three cases are discussed according to
different values of the acceleration.
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Figure 3. Phase plane of the payload.

Case 1. When a > 0, the vector in the phase plane moves in the clockwise direction at a constant angular
velocity ωn;

Case 2. When a < 0, the vector moves in the counterclockwise direction at the same velocity;
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Case 3. When a = 0, the vector stays in the original point; namely, there does not exist any relative motion
between the crane and the payload.

Here, an appropriate trajectory is determined considering the geometric properties. Based on the
above analysis, the primary expression can be furnished as:

..
x =


amax,
−amax,
0,

0 ≤ t ≤ tacc

tacc + tcnst ≤ t ≤ 2tacc + tcnst

else
(13)

where tacc is the duration of the acceleration, and tcnst is the duration for the constant speed stage.
As shown in Figure 3, tacc, tcnst and amax can be determined according to the geometric properties.

At the beginning of acceleration, the vector starts to move from the original point towards O2 with the
angular velocity ωn. After reaching A2, the maximum payload swing is achieved, and the relationship
with respect to θmax and amax can be determined, i.e.,:

|amax| =
g|θmax|

2
(14)

and they should be satisfied with the following constraints:

|θmax| ≤ θlim, |amax| ≤ alim (15)

The payload swing reaches zero after one complete acceleration cycle. At T, the crane stops
accelerating and keeps its speed unchanged, while the load’s swing angle maintains zero, as stated
in Case 2. In addition, during the deceleration process presented in Case 3, the similar phenomenon
can also be observed: that one cycle is required to be undergone in order to reach the target position
through point A2, during which the residual angle can be eliminated.

Based on the previous analysis, the duration in terms of acceleration/deceleration stages requires
the same time cost, i.e., T. Given the chosen target position, the motion states can be determined after
an integral calculation:

.
x(t) =


amaxt,
amaxtacc,
−amax(t− Ttotal),
0,

0 ≤ t ≤ tacc

tacc ≤ t ≤ tacc + tcnst

tacc + tcnst ≤ t ≤ ttotal
else

(16)

x(t) =


1
2 amaxt2, 0 ≤ t ≤ tacc

amaxtacct, tacc ≤ t ≤ tacc + tcnst

−amax(
1
2 t2 − Ttotalt), tacc + tcnst ≤ t ≤ ttotal

0, else

(17)

The displacement of the entire operation period can be calculated as:

Stotal =
∫ Ttotal

0

.
x(t)dt = amaxtacc(tacc + tcnst) (18)

where Ttotal = 2tacc + tcnst. Moreover, the duration during the acceleration and constant velocity
period can be calculated: {

tacc = T = 2π
√

L/g
tcnst = (Stotal/vmax)− 2π

√
L/g

(19)
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where vmax = amaxtacc is the maximum velocity of the crane. Note that a pivotal condition versus vmax

should be considered here due to tcnst ≥ 0, which can be furnished as:

vmax ≤
Stotal

2π
√

L/g
≤ vlim (20)

Combining with Equations (9), (14), and (19), the constraint can be set:

θmax =
2amax

g
≤ θlim (21)

Now, based on Equations (8) and (21), the upper limit of the maximum acceleration can be yielded:

amax ≤ min
(

alim,
gθlim

2

)
(22)

where alim indicates the boundary value of the acceleration, and finally, vmax = amaxtacc. The velocity
constraint can be calculated considering Equation (20) in order to improve the efficiency, and thus,
the maximum velocity can be defined as:

vmax = min

(
vlim,

Stotal

2π
√

L/g
, 2πalim

√
L/g

)
(23)

Meanwhile, the maximum acceleration can be determined:

amax =
vmax

2π
√

L/g
(24)

Now, all of the parameters are determined considering the designed requirements. In the next
step, the corresponding controller and its parameters are designed with care.

3.2. LQR Control Based on Trajectory Planning

The TP algorithm is easy to apply, which can take the moving efficiency and maximum payload
swing into account. However, it is difficult to adaptively adjust the swing for the payload in practical
conditions, and the oscillation cannot be suppressed when external disturbance exists. Hence, the TP
algorithm combined with the closed-loop control can effectively solve these problems.

For the underactuated system, there exists multiple motion states, and thus, it is necessary to
attain the feedback control. According to Equation (6), the LQR control law from the feedback input
uLQR = −KX yields:

.
X = (A− BK)X (25)

where K can be calculated by minimizing the energy function of LQR ELQR, as:

ELQR =
1
2

∫ ∞

0

(
XTQX + uT

LQRRuLQR

)
dt (26)

where Q is a semi-definite matrix of 4 × 4, and R is a positive define matrix constant of 1 × 1. Then,
K can be calculated as:

K = R−1BT P (27)

where P is a positive definite symmetric matrix, which is evaluated from the Algebraic Riccati equation
(ARE) as:

AT P + PA + Q− PBR−1BT P = 0 (28)
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By this manner, the gain of LQR feedback K=[k1, k2, k3, k4] can be estimated, and the crane
acceleration u can thus be determined. In order to accomplish the position control accurately,
the differential and integral control is introduced for the crane’s position adjustment. Hence,
the improved controller can be expressed as:

u(t) = KI

∫ t

0
eTdt + KD

.
eT − k1xT − k2

.
xT − k3θ − k4

.
θ (29)

where u(t) is the control input; and k1, k2, k3, and k4, belonging to K, are defined as feedback gains for
the crane position and velocity, the payload swing, and the angular velocity, respectively. eT = xd − xT
is the error trajectory of the crane system, and K can be determined based on Q and R by engineering
experience. However, it is difficult to find the optimal solution in this manner. KI and KD are integral
and differential gains, which are designed by the response optimization, and the constraint of the
response optimization can be expressed as:

optimal(KI , KD) = min
[

max
0≤t≤10

(xTsim − xTbnd)

]
s.t.

{
0 ≤ xT ≤ 0.320

0.285 ≤ xT ≤ 0.302
0 ≤ t ≤ 1.2
1.2 ≤ t ≤ 10

(30)

where xTsim is the simulated response of the crane position, and xTbnd is the piecewise linear bound of
the crane position.

3.3. Multi-Objective Optimization

It is critical to determine the control parameters of the designed algorithm, i.e., k1, k2, k3, and k4,
and thus, the weighted matrixes Q and R need to be optimized. Here, integration of time-weighted
absolute value of the error (ITAE) is introduced in order to evaluate the convergence and oscillation of
the system, as: {

Jθ =
∫ ∞

0 t|eθ(t)|dt
JT =

∫ ∞
0 t|eT(t)|dt

(31)

where Jθ and JT denote the ITAEs of the payload swing and the crane position, respectively. Here,
the MOGA is applied to find optimal solutions among multiple objective functions. According to the
optimal method, a series of points reflecting the control effects can be presented based on the ITAEs
of the crane and payload. In addition, the optimization process should be subject to the following
constraints:

fPareto = min(Jθ , JT)

s.t


vmax = min

(
vlim, Stotal

2π
√

L/g
, 2πalim

√
L/g

)
−π/2 < θ(t) < π/2

amax ≤ min
(

alim, gθlim
2

) (32)

Here, we employed the MOGA algorithm to calculate the optimization parameters with the
criteria of minimizing the ITAE of the crane position and the payload swing. As can be seen in the
Figure 4, the whole process will first choose the initial weighted matrixes Q and R randomly. Then,
the control commands can be generated based on the constraints and the updated ITAE of the crane
position, and the payload swing can be calculated based on the fitness function. In the next step,
the MOGA is applied to search the optimal parameters through a series of the selection, crossover,
and mutation, wherein the roulette wheel selection and the two-point crossover are adopted. For the
MOGA algorithm, first, some existing populations are selected to generate the next generation, and this
process is known as selection. Some existing populations are considered as elitists, and are directly
selected as next generations without any change. The selection criteria is based on the fitness function



Appl. Sci. 2018, 8, 473 9 of 19

and their corresponding constraints. During the crossover process, the parent chromosomes are
hybridized to generate new offsprings, and meanwhile, some bits of chromosomes are uniformly
or randomly changed with a certain possibility. This is the so-called mutation, of which the main
function is to avoid falling into a local optimum. By means of these actions, a new chromosome group
is generated, which is different from the previous version. The whole action is operated iteratively
until the terminal condition is reached, which usually includes exceeding the budget time, reaching the
maximum allowable amount, etc. Finally, the Pareto fronts and the optimized parameters can be
found. In this paper, the population size, the crossover rate, and the mutation rate of the MOGA
algorithm are set to 40, 0.8, and 0.05, respectively, and the number of iterations is set to 50 after
repetitive tunning. Furthermore, the constraint θlim of the payload swing is set to be less than 4◦,
the maximum acceleration is defined as 5 m/s2, the maximum crane velocity is 1.5 m/s, the target
position is xd = 0.4 m, and the error of two objective functions is limited within 1 × 10−4.
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Next, the stability analysis is conducted, and the stability proof is given.

3.4. Stability Analysis

Theorem. Independently from the stochastic initial payload swing, the proposed algorithm given by
Equation (29) can control the crane to the desired position and suppress the payload swing, i.e.,:

lim
t→∞

[
xT

.
xT

..
xT θ

.
θ

..
θ
]
=
[

xd 0 0 0 0 0
]

(33)

Proof. In order to meet the demand of the theorem, a non-negative function is selected as:

V(t) =
1
2

L
.
θ

2
+ g(1− cos θ) ≥ 0 (34)

Differentiating Equation (34) and combining Equation (2) with Equation (29), we can get:

.
V(t) =

.
θ(L

..
θ + g sin θ)

= −
.
θ cos θ(KI

∫ t
0 eTdt + KD

.
eT − k1xT − k2

.
xT − k3θ − k4

.
θ)

(35)

According to the principle of the arithmetic mean–geometric mean (AM–GM) inequality,
Equation (35) can be rewritten as:

.
V(t) ≤ 1

2

.
θ

2
cos2 θ + 1

2

(
KI
∫ t

0 eTdt + KD
.
eT − k1xT − k2

.
xT − k3θ − k4

.
θ
)2

≤ 1
2

.
θ

2
cos2 θ + 5

2

(
K2

I

(∫ t
0 eTdt

)2
+ (KD + k2)

2 .
x2

T + k2
1x2

T + k3
2θ2 + k4

2
.
θ

2
) (36)
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By integrating Equation (34), we can further get:

V(t) ≤ V(0) + 1
2

∫ t
0

.
θ

2
cos2 θdt + 5

2 K2
I
∫ t

0

(∫ t
0 eTdt

)2
dt

+ 5
2 (KD + k2)

2∫ t
0

.
x2

Tdt + 5
2 k2

1
∫ t

0 x2
Tdt + 5

2 k3
2
∫ t

0 θ2dt + 5
2 k4

2
∫ t

0

.
θ

2
dt

(37)

In Equation (37), we can find that all of the integration items are bounded. Based on Equations (4)
and (34), it can prove that:

1
2

∫ t

0

.
θ

2
cos2 θdt ∈ L∞ (38)

Therefore, Equation (37) can be utilized to show that V(t) ∈ L∞, Based on this fact, the following
conclusion can be drawn from Equation (2). It can be proven that:

..
θ(t),

..
xT(t) ∈ L∞ (39)

Then, Barbalat lemma [38] can then be directly utilized to show that:

lim
t→∞

..
θ = 0, lim

t→∞

..
xT = 0 (40)

And Equation (37) can be rewritten as:

− 5
2

[
K2

I
∫ t

0

(∫ t
0 eTdt

)2
dt + (KD + k2)

2∫ t
0

.
x2

Tdt + k2
1
∫ t

0 x2
Tdt + k3

2
∫ t

0 θ2dt + k4
2
∫ t

0

.
θ

2
dt
]

≤ V(0)−V(t) + 1
2

∫ t
0

.
θ

2
cos2 θdt

(41)

Based on V(t) ∈ L∞ and Equation (38), Equation (41) can then be employed to conclude that:

θ(t),
.
θ(t), xT(t),

.
xT(t) ∈ L∞ (42)

According to Equations (37) and (42), it is easy to show that:

lim
t→∞

.
θ = 0, lim

t→∞

.
xT = 0 (43)

Based on Equations (2), (40), and (43), we can go through a similar analysis to show that:

lim
t→∞

sin θ = 0 (44)

Thus, Assumption 3 and Equation (4) can be employed to conclude that:

lim
t→∞

θ = 0 (45)

From Equations (29), (41) and (45), it is clear that:

lim
t→∞

xT = xd (46)

Now, the designed controller is proved to be asymptotically stable. Next, numerical simulation
and experimental validation are performed in order to validate the proposed algorithm.

4. Numerical Simulation

In this section, the simulation validation and control performance validation are conducted.
All simulations are carried out based on Matlab/Simulink, and the MOGA is implemented with
its built-in standard code. The crane trajectory is designed with the constraints provided by the TP.
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The anti-disturbance of the control is solved combining the LQR. The model parameters are shown
in Table 1.

Table 1. Model parameters.

Parameter Note Value

L Payload length 0.122 m
g Gravity 9.81 m/s2

Based on the MOGA, a series of Pareto fronts can be achieved in light of the different requirements
after iterations. Since the security of the cargo has a higher priority, the swing optimal solution is
considered chiefly in this section, and the optimal control solutions of the Pareto front are shown in
Figure 5. The horizontal coordinate and the vertical coordinate denote the ITAEs of the swing angle
and the crane’s position, respectively. According to the actual application, three solutions, including
the time optimization, swing angle minimization, and the trade-off in between, are selected for further
analysis, as marked in Figure 6. The weighted matrixes of three solutions, Q and R, are obtained
by the MOGA; then, the feedback gain K is achieved with these weighted matrixes. The gain of the
integration control and differential control, i.e., KI and KD, are acquired by the response optimization.
The weighted matrixes and the parameters of these three solutions are displayed in Table 2, and the
performances of them are shown in Table 3. The main tasks of Solutions 1 and 3 are to minimize the
swing angle and the regulation time, respectively. The main destination of Solution 2 is the trade-off
between solutions 1 and 3.
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Table 2. Performance of three solutions.

Parameter Solution 1 Solution 2 Solution 3

Q


470.19 0 0 0

0 219.74 0 0
0 0 465.33 0
0 0 0 2.01




498.57 0 0 0
0 230.79 0 0
0 0 503.24 0
0 0 0 2.01




474.60 0 0 0
0 230.78 0 0
0 0 450.99 0
0 0 0 2.06


R 2.21 2.05 2.42

[k1, k2, k3, k4] [14.60, 13.13,−14.66,−0.93] [15.89, 13.93,−15.89,−0.95] [13.99, 12.75,−13.75,−0.90]

KI 0.02 0.02 0.04

KD 166.82 169.34 175.86

Table 3. Performance of three solutions. ITAE: integration of the time-weighted absolute value of
the errors.

Performance Solution 1 Solution 2 Solution 3

Settling time (s) 4.21 2.68 1.86
Maximum payload swing (deg) 1.00 2.00 4.00

ITAE of swing 2469.21 2993.82 3999.16
ITAE of positon 910.92 328.69 154.58

It can be observed that Solution 1 is able to achieve the minimal payload swing. The maximum
payload swing is 1◦, and the ITAE of the swing is 2469.21, whereas it takes a longer time, i.e., 4.21 s, to
reach control command. Solution 3 achieves the optimized time regulation, in which the minimum
settling time is required to sacrifice the regulation swing. The settling time is 2.35 s, and the ITAE
of the position control declines by 83.03%. However, the maximum payload swing increases by 3◦

compared with Solution 1. Solution 2 is the trade-off regulation, which means that the time is not at its
minimum, and the swing is not yet smallest when compared with solutions 1 and 3. This solution is
the most reasonable choice, since that its settling time is reduced by 1.53 s compared with Solution 1,
and the payload swing decreases by 2◦ compared with Solution 3. Thus, Solution 2 can be selected as
the control algorithm for the following study, since it can not only ensure the load swing angle within
a small range, it can also control the load to reach the target position with fast speed.

By simulation, the parameters based on the LQR and the proposed algorithm are shown in Table 4,
respectively. There exists obvious difference among the algorithm parameters, since the crane trajectory
is predetermined by the proposed algorithm. From Figure 7, although the TP and LQR can achieve
the effective control, the proposed controller can improve the efficiency that the TP algorithm cannot
handle. As displayed in Figure 8, the performance indicators of the proposed algorithm are preferably
superior to those of the other two control methods under the same swing constraint. Compared with
the TP, the settling time shortens to be 1.35 s, the ITAE of the swing angle decreases by 3.24%, and the
ITAE of the position decreases by 98.05%. Compared with LQR, the settling time reduced by 1.11 s,
the ITAE of swing decreased by 12.82%, and the ITAE of position fell by 68.13%. Based on the above
comparative analysis, we can conclude that the proposed method can achieve the position control
rapidly, and meanwhile satisfy the swing constraint requirement.

Table 4. Parameters of the linear quadratic regulator (LQR), and the proposed method.

Parameter LQR Proposed Method

KI NA 0.02
KD NA 169.34

[k1, k2, k3, k4] [1.46, 2.56,−3.13,−1.35] [15.89, 13.93,−15.89,−0.95]
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Figure 7. Control response of trajectory planning (TP), linear quadratic regulator (LQR), and the
proposed method.
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Figure 8. Performance of three controllers.

In order to verify the anti-disturbance performance, an acceleration excitation is given to the crane,
thereby leading to a certain swing angle for the payload. Here, the acceleration is set as 0.8 m/s2,
and its duration as 0.2 s. The responses of the TP, LQR, and proposed algorithm are compared
in Figure 9. It can be observed that the maximum payload swing of TP is 7.3◦ when the external
disturbance occurs; obviously, it cannot meet the control demands. In addition, the LQR algorithm
can suppress the swing, and the maximum swing is 2.03◦. However, the whole duration is still 1.66 s.
The performance of the proposed algorithm is superior to that of other control methods, and the
settling time is 1.44 s. Thus, it proves that the algorithm can achieve fast, stable ability and realize
immune control of external disturbances.
Appl. Sci. 2018, 8, 473 14 of 19 

 

Figure 9. Response of different controllers with external disturbances. 

Next, experimental validation is performed to further justify the feasibility of the proposed 

algorithm. 

5. Experimental Verification 

In order to ensure the safety of the cargo, the payload swing should be the prior control object, 

and Solution 2 is selected as the method of the experiment. The experimental validation is conducted 

based on a test platform of B&R Industrial Automation Ltd., which supplies an integrated solution 

for automation systems [39]. The experimental equipment is designed based on a downsized model 

according to the actual bridge crane [40], as shown in Figure 10. It employs a metal lever and a metal 

load to simulate the actual crane line and the payload, respectively. The system applies a motor to 

move the crane system in a horizontal direction, thereby simulating the actual cargo transportation. 

Compared with actual cranes, the downsized model can meet the requirements of control algorithm 

regulation, and yet, the weight and vertical swing of the cable and the friction of the crane during 

movement cannot be taken into account [41]. 

 

Figure 10. Anti-swing control equipment. 

In the actual application, there are several factors that can possibly influence the control 

precision, e.g., the target position, the payload weight, the cable length, and the external disturbance. 

In order to justify the advance of the proposed algorithm, a series of experimental validations are 

carried out considering different constraints, different payloads, different cable lengths, and 

disturbances, respectively. 

5.1. Constraints Condition 

In order to verify whether the constraints of the payload swing and the settling time can be both 

satisfied under different target positions, two groups of experiments are conducted. Here, the 

maximum swing angle is set to be 2°. The corresponding responses with respect to different moving 

ranges are shown in Figure 11 and Table 5, respectively. It can be found that the actual maximum 

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

 

 P
o
s
it
io

n
 (

m
)

 

 

 

0 1 2 3 4 5 6 7

-5

0

5

 Time (seconds)

 T
h
e
ta

 (
d
e
g
)

 

 

 

Trajectory Planning

LQR

Proposed Method

Hosting PC

Crane & Payload

Compact 

Simulation Panel

Motor

Programmable 

Logic Controller
Power Supply ACOPOSimicro 

Servo

Figure 9. Response of different controllers with external disturbances.

Next, experimental validation is performed to further justify the feasibility of the
proposed algorithm.
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5. Experimental Verification

In order to ensure the safety of the cargo, the payload swing should be the prior control object,
and Solution 2 is selected as the method of the experiment. The experimental validation is conducted
based on a test platform of B&R Industrial Automation Ltd., which supplies an integrated solution
for automation systems [39]. The experimental equipment is designed based on a downsized model
according to the actual bridge crane [40], as shown in Figure 10. It employs a metal lever and a metal
load to simulate the actual crane line and the payload, respectively. The system applies a motor to
move the crane system in a horizontal direction, thereby simulating the actual cargo transportation.
Compared with actual cranes, the downsized model can meet the requirements of control algorithm
regulation, and yet, the weight and vertical swing of the cable and the friction of the crane during
movement cannot be taken into account [41].
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Figure 10. Anti-swing control equipment.

In the actual application, there are several factors that can possibly influence the control
precision, e.g., the target position, the payload weight, the cable length, and the external
disturbance. In order to justify the advance of the proposed algorithm, a series of experimental
validations are carried out considering different constraints, different payloads, different cable lengths,
and disturbances, respectively.

5.1. Constraints Condition

In order to verify whether the constraints of the payload swing and the settling time can be
both satisfied under different target positions, two groups of experiments are conducted. Here,
the maximum swing angle is set to be 2◦. The corresponding responses with respect to different
moving ranges are shown in Figure 11 and Table 5, respectively. It can be found that the actual
maximum swing angle is 1.92◦, which satisfies the setting requirement. The regulation time is almost
the same, and the responses are shown in Figure 12 and Table 6. The results show that all of the
regulated time is less than 1.64 s. When the target position changes, the regulated time basically
remains unchanged. To summarize, for different target positions, the proposed algorithm can achieve
effective control.

Table 5. Performance within angle constraint.

Target Position Settling Time (s) Maximum Payload Swing (deg)

0.2 m 1.87 1.93
0.3 m 2.35 1.85
0.4 m 2.67 1.93
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Table 6. Performance within a time optimal solution.

Target Position Settling Time (s) Maximum Payload Swing (Deg)

0.2 m 1.63 2.0
0.3 m 1.64 3.2
0.4 m 1.66 4.0
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5.2. Different Payload Condition

Some magnetic sheets are attached to the original load to simulate the weight variation, as shown
in Figure 13. When the weight changes, the controller can still move the cargo to the desired position
with almost the same maximum swing angle. The maximum difference is less than 0.06◦. Thus,
the variation of the payload cannot affect the settling time and the maximum swing, and the robustness
of the proposed algorithm is proved to some extent.
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5.3. Different Cable Length Condition

In addition, it is imperative to consider different cable lengths in order to verify the algorithm.
The response is shown in Figure 14. The maximum payload swing increases by 0.2◦ when the cable
length varies from 0.092 m to 0.122 m. Certainly, longer cable length brings larger swing angle.
Nonetheless, it can still satisfy the constraint of the maximum angle, i.e., 2◦. Thus, the controller can
effectively control the crane to reach the target position, and meanwhile can satisfy the maximum
angle constraint when the payload and cable length change.
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5.4. Disturbance Condition

Moreover, the control performance needs to be validated when external disturbance exists. Here,
the disturbance is maintained for 3 s to 5 s. Similar to that of the simulation, an external acceleration of
0.8 m/s2 is added, and its duration is 0.2 s. By comparing the responses of three different controllers
in Figure 15, the proposed algorithm can realize the optimal control effect compared with the other
methods. The proposed algorithm can reach the target position with the shortest time. It can also
be observed that the TP algorithm cannot suppress the payload swing, and the LQR algorithm can
induce the swing angle by 1.41◦. In this manner, conclusions can be made that the proposed method
can effectively suppress the external disturbance.Appl. Sci. 2018, 8, x FOR PEER REVIEW  17 of 19 
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6. Conclusions

In this paper, a novel algorithm combining the TP and the LQR is employed to achieve control
of the anti-swing crane system. The proposed algorithm takes the acceleration of the payload as the
control variable, and the ITAEs of the position and the swing angle as the criterion of evaluation.
The MOGA is applied to find the optimal algorithm parameters. Compared with the TP algorithm and
the LQR algorithm, the proposed algorithm can reach the control settings. The regulation time can be
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shortened, and the maximum swing angle can be reduced. Simulation and experimental validation
justify the feasibility of the proposed algorithm.

Following works will focus on the real implementation of the proposed algorithm in port
cargo transportation.
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