Next Issue
Previous Issue

Table of Contents

Minerals, Volume 8, Issue 4 (April 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) Scanning precession diffraction offers the possibility to record orientation maps within the [...] Read more.
View options order results:
result details:
Displaying articles 1-53
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Enhanced Tolerance to Cadmium in Bacterial-Fungal Co-Cultures as a Strategy for Metal Biorecovery from e-Waste
Minerals 2018, 8(4), 121; https://doi.org/10.3390/min8040121
Received: 31 January 2018 / Revised: 6 March 2018 / Accepted: 14 March 2018 / Published: 21 March 2018
PDF Full-text (8017 KB) | HTML Full-text | XML Full-text
Abstract
We investigated a microbe-based approach to be used for the biorecovery of valuable metals from e-waste. E-waste is a heterogeneous matrix at the microbial scale. Therefore, this study aims at taking advantage of bacterial-fungal (BF) interactions in order to mobilize and immobilize a
[...] Read more.
We investigated a microbe-based approach to be used for the biorecovery of valuable metals from e-waste. E-waste is a heterogeneous matrix at the microbial scale. Therefore, this study aims at taking advantage of bacterial-fungal (BF) interactions in order to mobilize and immobilize a selected metal present in e-waste. We used cadmium (Cd) and a selection of Cd-tolerant microorganisms from our culture collection or isolated from a naturally cadmium-contaminated soil. Several experiments were designed in order to use the synergistic bioremediation capabilities of BF couples to mobilize and immobilize Cd from a culture medium. Initial results showed that the selected synergistic BF couples are more tolerant to Cd concentrations than the organisms alone. However, setting the conditions leading to effective immobilization of this toxic metal still need further work. Using microbial consortia rather than single species represents an innovative alternative to traditional bioremediation approaches for the development of new biotechnological approaches in urban mining. Full article
(This article belongs to the Special Issue Geomicrobiology and Biogeochemistry of Precious Metals)
Figures

Figure 1

Open AccessArticle Influence of Particle Size in Talc Suppression by a Galactomannan Depressant
Minerals 2018, 8(4), 122; https://doi.org/10.3390/min8040122
Received: 28 January 2018 / Revised: 14 March 2018 / Accepted: 16 March 2018 / Published: 21 March 2018
PDF Full-text (4229 KB) | HTML Full-text | XML Full-text
Abstract
Flotation behavior of different sizes of particles may follow different trends. The influence of particle size in talc suppression by a depressant galactomannan was studied in this research. The flotation response and mechanism were examined by flotation tests, modified flotation rate constant and
[...] Read more.
Flotation behavior of different sizes of particles may follow different trends. The influence of particle size in talc suppression by a depressant galactomannan was studied in this research. The flotation response and mechanism were examined by flotation tests, modified flotation rate constant and entrainment recovery calculation, laser particle size experiments, adsorption tests, and advancing contact angle measurement as well as scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The maximum recovery increased with particle size increases in the absence of galactomannan FPY (Fenugreek polysaccharide). The obviously suppressed effect was observed for the size fraction of −74 + 38 μm after reacting with FPY, but low efficiency was received for −38 μm and −10 μm, respectively. Laser particle size analysis indicated that the FPY has a certain function for the flocculation of fine particles. It is beneficial for reducing recovery by entrainment. EDS and advancing contact angle test results showed that the difference in contact angles probably is a result of genuine differences in the quantity of O and Mg bearing surface species, while the contact angle varied with particle size fraction in the absence of FPY. Adsorption and SEM test results demonstrated that in the case of −74 + 38 μm, the depressant adsorption density on the mineral surface is higher than the other two size fractions. On the whole, FPY probably is not enough of a depressant for talc suppression. Full article
(This article belongs to the Special Issue Flotation Chemistry)
Figures

Figure 1

Open AccessArticle Influence of Addition of Fluid Catalytic Cracking Residue (FCC) and the SiO2 Concentration in Alkali-Activated Ceramic Sanitary-Ware (CSW) Binders
Minerals 2018, 8(4), 123; https://doi.org/10.3390/min8040123
Received: 7 March 2018 / Revised: 15 March 2018 / Accepted: 17 March 2018 / Published: 21 March 2018
PDF Full-text (3975 KB) | HTML Full-text | XML Full-text
Abstract
Production of Portland cement requires a large volume of natural raw materials and releases huge amounts of CO2 to the atmosphere. Lower environmental impact alternatives focus on alkali-activated cements. In this paper, fluid catalytic cracking residue (FCC) was used to partially replace
[...] Read more.
Production of Portland cement requires a large volume of natural raw materials and releases huge amounts of CO2 to the atmosphere. Lower environmental impact alternatives focus on alkali-activated cements. In this paper, fluid catalytic cracking residue (FCC) was used to partially replace (0 wt %–50 wt %) ceramic sanitaryware (CSW) in alkali-activated systems. Samples were activated with NaOH and sodium silicate solutions and were cured at 65 °C for 7 days and at 20 °C for 28 and 90 days. In order to increase CSW/FCC binders’ sustainability, the influence of reducing the silica concentration (from 7.28 mol·kg−1 up to 2.91 mol·kg−1) was analyzed. The microstructure of the developed binders was investigated in pastes by X-ray diffraction, thermo tests and field emission scanning electron microscopy analyses. Compressive strength evolution was assessed in mortars. The results showed a synergetic effect of the CSW/FCC combinations so that, under the studied conditions, mechanical properties significantly improved when combining both waste materials (up to 70 MPa were achieved in the mortars containing 50 wt % FCC cured at room temperature for 90 days). Addition of FCC allowed CSW to be activated at room temperature, which significantly broadens the field of applications of alkali-activated CSW binders. Full article
(This article belongs to the Special Issue Geopolymers)
Figures

Figure 1

Open AccessArticle World-Class PGE-Cu-Ni Talnakh Deposit: New Data on the Structure and Unique Mineralization of the South-Western Branch
Minerals 2018, 8(4), 124; https://doi.org/10.3390/min8040124
Received: 30 December 2017 / Revised: 15 March 2018 / Accepted: 15 March 2018 / Published: 21 March 2018
PDF Full-text (11182 KB) | HTML Full-text | XML Full-text
Abstract
The Talnakh deposit is one of the largest PGE-Cu-Ni deposits in the world. It is located inside the North-Western part of the Siberian Trap province and consists of three branches. The problem of massive ore origins has been discussed for several decades. The
[...] Read more.
The Talnakh deposit is one of the largest PGE-Cu-Ni deposits in the world. It is located inside the North-Western part of the Siberian Trap province and consists of three branches. The problem of massive ore origins has been discussed for several decades. The structure of the South-Western branch and the mineralogy of related its Cu-rich ore are discussed in this article. The Southern-2 orebody has a deep inclination (45°) inside the intrusive body, close to its wall, in contrary to the horizontal orebodies of the North-Eastern branch. Mineral composition of the Southern-2 orebody differs from the composition the other orebodies of the Talnakh intrusion as well. It consists ofchalcopyrite, pentlandite with subordinate cubanite, and pyrrhotite. Its specific feature is a large amount of bornite and chalcocite. These minerals occur in disseminated and massive ores. The ores of the other branches of the Talnakh intrusion have chalcopyrite-pyrrhotite compositions whilethe Southern-2 massive ore is enriched in Cu (19.03–25.8 wt %; Cu/Ni = 3.8–8.6) and PGE: ΣPGE changes from 39.1 to 279 ppm, Pd/Pt = 1.3–32. Twelve minerals of the systems Pd-Sn-Cu, Pd-Pb-Bi, Pd-Ni-As, Au-Ag-Pd-Cu, and intermetallics of the Pt-Fe-Cu-Ni types were discovered in ores, but are also widespread in other orebodies. Isoferroplatinum, sperrilite and cooperitewere not found. The unusual structure and composition of the Southern-2 orebody suggest its origin from a separate magma impulse. The correlation between disseminated and massive ores of the Southern 2 orebody in term of chemical and mineralogical composition is evidence of the formation of massive oresin situ, without displacement along the bottom of the massif. Full article
Figures

Figure 1

Open AccessArticle Removal of Potassium and Iron in Low Grade Bauxite by a Calcination-Acid Leaching Process
Minerals 2018, 8(4), 125; https://doi.org/10.3390/min8040125
Received: 18 January 2018 / Revised: 12 March 2018 / Accepted: 16 March 2018 / Published: 22 March 2018
PDF Full-text (8745 KB) | HTML Full-text | XML Full-text
Abstract
In order to explore the commercialized applications of the low-grade bauxite in the refractory industry, a calcination integrated with acid leaching method was adopted to remove the potassium (K) and iron (Fe) from the diaspore-illite (DI) type low-grade bauxite. Following calcining the bauxite
[...] Read more.
In order to explore the commercialized applications of the low-grade bauxite in the refractory industry, a calcination integrated with acid leaching method was adopted to remove the potassium (K) and iron (Fe) from the diaspore-illite (DI) type low-grade bauxite. Following calcining the bauxite at different temperatures, the leaching parameters, including the sulfuric acid concentration, temperature, sulfuric acid to bauxite ratio, and reaction time were systematically studied. The appropriate and economical conditions for removing the impurities were found to be calcining the bauxite at 550 °C, and leaching it with a sulfuric acid solution of 1.2 mol/L, sulfuric acid/bauxite ratio of 9 mL/g at a reaction temperature of 70 °C and reaction time of 2 h, under these conditions, the removal efficiency of K and Fe from the bauxite can reach 30.32% and 47.33%, respectively. The treated bauxite was examined by XRD analysis, SEM observations, and chemical analysis. Kinetics of the removing process were calculated by two models, and the results showed that the leaching process was controlled by the mixed shrinking core model, which was affected by both the diffusion through solid layer and the interface transfer. In summary, the approach in this work presents a promising process for comprehensive utilization of the low-grade bauxite. Full article
(This article belongs to the Special Issue Sustainable Mineral Processing Technologies)
Figures

Figure 1

Open AccessArticle Towards Zn-Dominant Tourmaline: A Case of Zn-Rich Fluor-Elbaite and Elbaite from the Julianna System at Piława Górna, Lower Silesia, SW Poland
Minerals 2018, 8(4), 126; https://doi.org/10.3390/min8040126
Received: 18 January 2018 / Revised: 16 March 2018 / Accepted: 16 March 2018 / Published: 22 March 2018
PDF Full-text (45586 KB) | HTML Full-text | XML Full-text
Abstract
Tourmalines are a group of minerals which may concentrate various accessory components, e.g., Cu, Ni, Zn, Bi, Ti, and Sn. The paper presents fluor-elbaite and elbaite from a dyke of the Julianna pegmatitic system at Piława Górna, at the NE margin of the
[...] Read more.
Tourmalines are a group of minerals which may concentrate various accessory components, e.g., Cu, Ni, Zn, Bi, Ti, and Sn. The paper presents fluor-elbaite and elbaite from a dyke of the Julianna pegmatitic system at Piława Górna, at the NE margin of the Bohemian Massif, SW Poland, containing up to 6.32 and 7.37 wt % ZnO, respectively. Such high amounts of ZnO are almost two times higher than in the second most Zn-enriched tourmaline known to date. The compositions of the Zn-rich tourmalines from Piława Górna, studied by electron micropropy and Raman spectroscopy, correspond to the formulae: X(Na0.733Ca0.0130.254)Σ1Y(Al1.033Li0.792Zn0.755Fe2+0.326Mn0.094)Σ3ZAl6(TSi6O18)(BO3)3V(OH)3W(F0.654OH0.344), and X(Na0.779Ca0.0150.206)Σ1Y(Al1.061Li0.869Zn0.880Fe2+0.098Mn0.094)Σ3ZAl6(TSi6O18)(BO3)3V(OH)3W(OH0.837F0.163), respectively, with Zn as one of the main octahedral occupants. A comparison with other tourmalines and associated Zn-rich fluor-elbaite and elbaite from the pegmatite indicates that atypically high Zn-enrichment is not a result of Zn-Fe fractionation, but dissolution and reprecipitation induced by a late (Na,Li,B,F)-bearing fluid within the assemblage of gahnite spinel and primary schorl-type tourmaline. This strongly suggests Na-Li-B-F metasomatism of gahnite-bearing mineral assemblages as that is the only environment that can promote crystallization of a hypothetical Zn-dominant tourmaline. The compositions of the Zn-rich fluor-elbaite and elbaite suggest three possible end-members for such a hypothetical tourmaline species: NaZn3Al6(Si6O18)(BO3)3(OH)3(OH), ☐(Zn2Al)Al6(Si6O18)(BO3)3(OH)3(OH) and Na(Zn2Al)Al6(Si6O18)(BO3)3(OH)3O by analogy with other tourmalines with divalent Y occupants, such as schorl/foitite/oxy-schorl and dravite/magnesio-foitite/oxy-dravite. Full article
Figures

Figure 1

Open AccessArticle The Sierra de Cacheuta Vein-Type Se Mineralization, Mendoza Province, Argentina
Minerals 2018, 8(4), 127; https://doi.org/10.3390/min8040127
Received: 14 February 2018 / Revised: 13 March 2018 / Accepted: 15 March 2018 / Published: 22 March 2018
PDF Full-text (10263 KB) | HTML Full-text | XML Full-text
Abstract
The Sierra de Cacheuta vein-type Se mineralization in the Mendoza Province predominantly consists of clausthalite, klockmannite, eskebornite, eucairite, and naumannite. These primary selenides formed in a fault zone, cutting through fine-grained trachytic host rock. Cross-sections perpendicular to the veinlets, polarized light microscopy, and
[...] Read more.
The Sierra de Cacheuta vein-type Se mineralization in the Mendoza Province predominantly consists of clausthalite, klockmannite, eskebornite, eucairite, and naumannite. These primary selenides formed in a fault zone, cutting through fine-grained trachytic host rock. Cross-sections perpendicular to the veinlets, polarized light microscopy, and scanning-electron microscopy, combined with electron-microprobe analysis, provide a record of the relationship between different crystallization and deformation events. Mineralization encompasses four episodes of fault formation (d1–d4): early zonal selenide crystallization (stage (I)); ductile deformation of the selenides (stage (II)); fault re-opening, fluid-mediated metal mobilization, metalliferous-fluid infiltration, and mineral precipitation (stage (III)); and subsequent alteration (stage (IV)). The Se vein originated from multiple injections of highly oxidized, metal-rich fluids. These low-T solutions (estimated max. temperature 100 °C, max. pressure 1 bar) possessed high to exceptionally high Se fugacities (log fSe2 between −14.5 and −11.2) that prevailed for most of the evolution of the deposit. The source of the Se and the accompanying metals (Cu, Ag, Pb, and Fe) is probably the neighboring bituminous shale. The deposition of Se minerals occurred when the oxidized metal-bearing solutions came in contact with a reductant, which caused the reduction of mobile selenate to immobile selenide or elemental Se. We identified several features that permit us to safely distinguish samples from Cacheuta from Argentinian Se deposits in the Province of La Rioja: (I) trachytic host rock fragments containing bitumen and TiO2 pseudomorphs after titanomagnetite; (II) early Co-rich and Ni-poor krut’aite (Co < 6.7 wt %, Ni < 1.2 wt %) partly replaced by clausthalite, umangite, klockmannite, eskebornite, Ni-poor tyrrellite (Ni < 2.7 wt %), Ni-poor trogtalite (Ni < 1.2 wt %), and end-member krut’aite and petříčekite; (III) lack of calcite gangue; and (VI) Se-bearing alteration minerals comprising chalcomenite, molybdomenite, cobaltomenite, an unnamed Cu selenide (for which the ideal formula may be either Cu2Se3 or Cu5Se8), and possibly mandarinoite, mereheadite, orlandiite, and scotlandite as new species for this occurrence. Full article
(This article belongs to the Special Issue Se-Bearing Minerals: Structure, Composition, and Origin)
Figures

Figure 1

Open AccessArticle U-Pb Geochronology and Geochemistry of U-Rich Garnet from the Giant Beiya Gold-Polymetallic Deposit in SW China: Constraints on Skarn Mineralization Process
Minerals 2018, 8(4), 128; https://doi.org/10.3390/min8040128
Received: 30 January 2018 / Revised: 21 March 2018 / Accepted: 22 March 2018 / Published: 23 March 2018
PDF Full-text (45281 KB) | HTML Full-text | XML Full-text
Abstract
The giant Beiya Au skarn deposit (over 300 tonnes Au metal reserve) is located in the middle part of the Jinshajiang-Ailaoshan alkaline porphyry metallogenic belt. The deposit is the largest Au skarn deposit and third largest Au deposit in China. In this paper,
[...] Read more.
The giant Beiya Au skarn deposit (over 300 tonnes Au metal reserve) is located in the middle part of the Jinshajiang-Ailaoshan alkaline porphyry metallogenic belt. The deposit is the largest Au skarn deposit and third largest Au deposit in China. In this paper, we present garnet U-Pb ages and trace element geochemical data from two types of skarn-related U-rich garnet from Beiya, and discuss their implications on skarn metallogenesis. Based on optical characteristics and major element compositions, the older Grt I and the younger Grt II (both belong to the grossular-andradite solid solution) are distinguishable: Grt II (Adr69.0Grs26.8–Adr93.5Grs1.5) is slightly richer in Fe than Grt I (Adr68.5Grs20.3–Adr86.3Grs3.4), with the average FeO contents being 25.0% and 24.5%, respectively. LA-ICP-MS garnet U-Pb dating yielded lower intercept ages of 35.8 ± 0.8 Ma (MSWD = 0.9, n = 20) and 34.0 ± 2.1 Ma (MSWD = 1.2, n = 16), respectively. These ages represent the timing of the garnet crystallization, and are consistent with published alteration ages within error, which suggests that the technique presented provides a reliable alternative in dating skarn alteration. Grt I has higher U content and lower Th/U ratio than Grt II, indicating a lower oxygen fugacity for the earlier skarn alteration. Grt II shows weak (or no) Eu anomaly and lower LREE/HREE ratios than those of Grt I, which indicates that Grt I and Grt II may have formed under a mildly acidic and nearly neutral condition, respectively. From the early prograde skarn (Grt I) to late prograde skarn (Grt II) stage, the ore-forming fluids may have changed from a relatively reduced acidic to a relatively oxidized neutral pH condition. Full article
Figures

Graphical abstract

Open AccessArticle Promote Alumina Leaching through Re-Pelleting: Effects of Directional Coating of Calcite on Silicate Grains
Minerals 2018, 8(4), 129; https://doi.org/10.3390/min8040129
Received: 22 February 2018 / Revised: 20 March 2018 / Accepted: 21 March 2018 / Published: 23 March 2018
PDF Full-text (32293 KB) | HTML Full-text | XML Full-text
Abstract
The contents of Fe and SiO2 in ferric bauxite are much higher than that in regular bauxite, and the leaching yield of Al2O3 from ferric bauxite cannot reach the general level of ordinary ores, even under optimal conditions. This
[...] Read more.
The contents of Fe and SiO2 in ferric bauxite are much higher than that in regular bauxite, and the leaching yield of Al2O3 from ferric bauxite cannot reach the general level of ordinary ores, even under optimal conditions. This paper introduces a pretreatment method to enhance sintering before leaching. First, mixing followed by grinding was found to be more efficient than grinding followed by mixing as a pretreatment method by forming a directional coating structure of CaCO3 on the SiO2 surface. Second, leaching yields increased grinding fineness because CaCO3 grain uniformity could be improved with the latter method. Finally, the leaching yields were increased by pulp consistency under certain conditions, as evidenced by improvements in CaCO3 uniformity, bulk density, and Al2O3 grain size, which parameters were beneficial to enhance leaching. The leaching yield of Al2O3 was increased from 75.2% to 87.15% by using the proposed mixing–grinding method with the leaching agent of water. Full article
Figures

Figure 1

Open AccessArticle Understanding Cationic Polymer Adsorption on Mineral Surfaces: Kaolinite in Cement Aggregates
Minerals 2018, 8(4), 130; https://doi.org/10.3390/min8040130
Received: 15 February 2018 / Revised: 6 March 2018 / Accepted: 16 March 2018 / Published: 23 March 2018
PDF Full-text (58519 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We present a joint experimental and theoretical investigation into the adsorption of polycationic quaternary ammonium polymers on the clay mineral kaolinite. Within the cement and concrete manufacturing industries such polymers are used to improve the final product by inerting the adsorption capacity of
[...] Read more.
We present a joint experimental and theoretical investigation into the adsorption of polycationic quaternary ammonium polymers on the clay mineral kaolinite. Within the cement and concrete manufacturing industries such polymers are used to improve the final product by inerting the adsorption capacity of the clay minerals for more expensive additives. The adsorption of the presently used polymer (FL22) was compared with both a similar variant, but without a hydroxyl group (Fl22mod) and uncharged polyvinyl alcohol (PVA). Experimental results show that adsorption of FL22 is higher than that of FL22mod at both pH 6 and at pH > 10 and that the adsorption of PVA is the highest. Theoretical density functional theory (DFT) results and simplified models consisting of the basal surfaces of kaolinite, with monomers of FL22, FL22mod and PVA gave monomer coverage per unit surface area of kaolinite, a comparison of the configurations of the relaxed models, formation energies and Mulliken charges. These results show that the polycationic polymers interact with the basal surfaces of kaolinite electrostatically, explaining the high affinity of these polymers for kaolinite surfaces in the experimental results. The hydroxyl groups of FL22 and PVA form hydrogen bonds with the basal surfaces of kaolinite in conditions of pH 6. The joint experimental and theoretical results suggest that, due to the presence of the hydroxyl group, the conformation of FL22 changes under pH, where at neutral pH it lies relatively flat to the kaolinite surfaces, but at higher pH, conformational changes of the polymer occur, thereby increasing the adsorbed quantity of FL22. Full article
(This article belongs to the Special Issue Organo-Mineral Interactions)
Figures

Figure 1

Open AccessArticle The Content of Toxic Metals in Agricultural Produce near a Coal Mine: Case Study KCB in Lazarevac, Serbia
Minerals 2018, 8(4), 131; https://doi.org/10.3390/min8040131
Received: 31 December 2017 / Revised: 14 March 2018 / Accepted: 16 March 2018 / Published: 23 March 2018
PDF Full-text (26250 KB) | HTML Full-text | XML Full-text
Abstract
The monitoring and analysis of concentrations of toxic metals (lead and cadmium) in soils and crops indicate that farmland in Serbia is generally not polluted, and the quality of soils is naturally good. Such soils are therefore suitable for organic farming. All noted
[...] Read more.
The monitoring and analysis of concentrations of toxic metals (lead and cadmium) in soils and crops indicate that farmland in Serbia is generally not polluted, and the quality of soils is naturally good. Such soils are therefore suitable for organic farming. All noted instances of contamination by toxic metals are of a local nature only, and the result of fertilizers and pesticides, municipal waste, exhaust gases, nearby production facilities, smelting plants, mines, tailings ponds, etc. Locations of this type need to be monitored regularly, and the status of the soil and crops assessed. The results presented in this paper place special emphasis on lead and cadmium. In this regard, the sampling of 67 plant foodstuffs that are being grown in Baroševac village, located in the immediate vicinity of the Kolubara coal mine, was carried out. Fruit samples represented 14.9% and vegetable samples 85.1% of the total sample. The heavy metal content (lead/cadmium) in seven samples was above the limits prescribed by the Regulations. Overall exposure of the adult population of Baroševac, calculated on the basis of all samples (67 in total), was 0.89 µg lead per kg of body weight per week, representing only 3.5% provisional tolerable weekly intake (PTWI), and 0.46 cadmium per kg of body weight, which amounts to 6.7% PTWI. Both values point to the fact that the risk is low, even in the case of populations with high exposure to these toxic metals. This suggests that sustainable development may be possible in the near future. Full article
Figures

Figure 1

Open AccessArticle Surface Chemical Characterisation of Pyrite Exposed to Acidithiobacillus ferrooxidans and Associated Extracellular Polymeric Substances
Minerals 2018, 8(4), 132; https://doi.org/10.3390/min8040132
Received: 31 January 2018 / Revised: 14 March 2018 / Accepted: 20 March 2018 / Published: 24 March 2018
PDF Full-text (21656 KB) | HTML Full-text | XML Full-text
Abstract
A. ferrooxidans and their metabolic products have previously been explored as a viable alternative depressant of pyrite for froth flotation; however, the mechanism by which separation is achieved is not completely understood. Scanning electron microscopy (SEM), photoemission electron microscopy (PEEM), time-of-flight secondary ion
[...] Read more.
A. ferrooxidans and their metabolic products have previously been explored as a viable alternative depressant of pyrite for froth flotation; however, the mechanism by which separation is achieved is not completely understood. Scanning electron microscopy (SEM), photoemission electron microscopy (PEEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and captive bubble contact angle measurements have been used to examine the surface physicochemical properties of pyrite upon exposure to A. ferrooxidans grown in HH medium at pH 1.8. C K-edge near edge X-ray absorption fine structure (NEXAFS) spectra collected from PEEM images indicate hydrophilic lipids, fatty acids and biopolymers are formed at the mineral surface during early exposure. After 168 h, the spectra indicate a shift towards protein and DNA, corresponding to an increase in cell population and biofilm formation on the surface, as observed by SEM. The Fe L-edge NEXAFS show gradual oxidation of the mineral surface from Fe(II) sulfide to Fe(III) oxyhydroxides. The oxidation of the iron species at the pyrite surface is accelerated in the presence of A. ferrooxidans and extracellular polymeric substances (EPS) as compared to HH medium controls. The surface chemical changes induced by the interaction with A. ferrooxidans show a significant decrease in surface hydrophobicity within the first 2 h of exposure. The implications of these findings are the potential use of EPS produced during early attachment of A. ferrooxidans, as a depressant for bioflotation. Full article
(This article belongs to the Special Issue Geomicrobiology and Biogeochemistry of Precious Metals)
Figures

Graphical abstract

Open AccessArticle Crystal Dissolution Kinetics Studied by a Combination of Monte Carlo and Voronoi Methods
Minerals 2018, 8(4), 133; https://doi.org/10.3390/min8040133
Received: 23 January 2018 / Revised: 16 March 2018 / Accepted: 21 March 2018 / Published: 24 March 2018
PDF Full-text (77723 KB) | HTML Full-text | XML Full-text
Abstract
Kinetic Monte Carlo (kMC) methods have been used extensively for the study of crystal dissolution kinetics and surface reactivity. A current restriction of kMC simulation calculations is their limitation in spatial system size. Here, we explore a new and very fast method for
[...] Read more.
Kinetic Monte Carlo (kMC) methods have been used extensively for the study of crystal dissolution kinetics and surface reactivity. A current restriction of kMC simulation calculations is their limitation in spatial system size. Here, we explore a new and very fast method for the calculation of the reaction kinetics of a dissolving crystal, capable of being used for much larger systems. This method includes a geometrical approach, the Voronoi distance map, to generate the surface morphology, including etch pit evolution, and calculation of reaction rate maps and rate spectra in an efficient way, at a calculation time that was about 1/180 of the time required for a kMC simulation of the same system size at one million removed atoms. We calculate Voronoi distance maps that are based on a distance metric corresponding to the crystal lattice, weighted additively in relation to stochastic etch pit depths. We also show how Voronoi distance maps can be effectively parameterized by kMC simulation results. The resulting temporal sequences of Voronoi maps provide kinetic information. By comparing temporal sequences of kMC simulation and Voronoi distance maps of identical etch pit distributions, we demonstrate the opportunity of making specific predictions about the dissolution reaction kinetics, based on rate maps and rate spectra. The dissolution of an initially flat Kossel crystal surface served as an example to show that a sequence of Voronoi calculations can predict dissolution kinetics based on the information about the distribution of screw defects. The results confirm that a geometrical relationship exists between the material flux from the surface at a certain point and the distance (or, when considering anisotropy, a function of distance) to the nearest defect. In this study, for the sake of comparability, the calculations are made using input parameters directly derived from the kMC models operating at the atomic scale. We show that, using values of v(rpit) and weighting factors obtained by kMC, the resulting surface morphologies and material flux are almost identical. This implies that discrete Voronoi calculations of starting and end points of the dissolution are sufficient to calculate material flux maps, without the time-consuming overhead of computing the interim reactions at the atomic-scale. This opens a promising new venue to efficiently upscale full-atomic kMC models to the continuum macroscopic level where reactive transport and Lattice Boltzmann calculations can be applied. Full article
(This article belongs to the Special Issue Molecular Simulation of Mineral-Solution Interfaces)
Figures

Figure 1

Open AccessArticle Non-Destructive Multi-Analytical Approach to Study the Pigments of Wall Painting Fragments Reused in Mortars from the Archaeological Site of Pompeii (Italy)
Minerals 2018, 8(4), 134; https://doi.org/10.3390/min8040134
Received: 21 February 2018 / Revised: 14 March 2018 / Accepted: 23 March 2018 / Published: 27 March 2018
Cited by 2 | PDF Full-text (27601 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
During the excavations carried out in Via di Mercurio (Regio VI, 9, 3) in Pompeii, in 2015, some red, green, black, and brown wall painting fragments were found in the preparatory layer of an ancient pavement which was probably built after the 62
[...] Read more.
During the excavations carried out in Via di Mercurio (Regio VI, 9, 3) in Pompeii, in 2015, some red, green, black, and brown wall painting fragments were found in the preparatory layer of an ancient pavement which was probably built after the 62 AD earthquake. These fragments, derived from the rubble, were used as coarse aggregate to prepare the mortar for building the pavement. The wall painting fragments are exceptionally well preserved, which is an uncommon occurrence in the city of Pompeii. However, as they were enclosed in the mortar, the wall painting fragments were protected from the high temperatures (probably ranging between 180 °C and 380 °C) produced by the eruption in 79 AD. The pigmented outer surface of each sample was analyzed using a non-destructive multi-analytical approach, by combining spectrophotometric colorimetry and portable X-ray fluorescence with micro-Raman spectroscopy. The compositional characterization of the samples revealed the presence of cuprorivaite, goethite, and celadonite in the green pigments; hematite in the red pigments; goethite in the brown pigment; and charcoal in the black pigment. These data probably provide us with the most “faithful picture” of the various red, green, black, and brown pigments used in Pompeii prior to the 79 AD eruption. Full article
(This article belongs to the Special Issue Mineralogical Applications for Cultural Heritage)
Figures

Figure 1

Open AccessArticle Effect of Grinding on Chrysotile, Amosite and Crocidolite and Implications for Thermal Treatment
Minerals 2018, 8(4), 135; https://doi.org/10.3390/min8040135
Received: 20 February 2018 / Revised: 14 March 2018 / Accepted: 26 March 2018 / Published: 28 March 2018
PDF Full-text (47132 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Nowadays, due to the adverse health effects associated with exposure to asbestos, its inertization is one of the most important issues of waste risk management. Based on the research line of mechano-chemical and thermal treatment of asbestos containing materials, the aim of this
[...] Read more.
Nowadays, due to the adverse health effects associated with exposure to asbestos, its inertization is one of the most important issues of waste risk management. Based on the research line of mechano-chemical and thermal treatment of asbestos containing materials, the aim of this study was to examine the effects of dry grinding on the structure, temperature stability and fibre size of chrysotile from Balangero (Italy), as well as standard UICC (Union for International Cancer Control) amosite and standard UICC (Union for International Cancer Control) crocidolite. Dry grinding was accomplished in an eccentric vibration mill by varying the grinding time (30 s, 5 and 10 min). Results show a decrease in crystallinity, the formation of lattice defects and size reduction with progressive formation of agglomerates in the samples after the mechanical treatment. Transmission electron microscopy (TEM) results show that the final product obtained after 10 min of grinding is composed of non-crystalline particles and a minor residue of crystalline fibres that are not regulated because they do not meet the size criteria for a regulated fibre. Grinding results in a decrease of temperature and enthalpy of dehydroxylation (ΔHdehy) of chrysotile, amosite and crocidolite. This permits us to completely destroy these fibres in thermal inertization processes using a lower net thermal energy than that used for the raw samples. Full article
(This article belongs to the Special Issue Occurrence, Crystal-Chemistry and Properties of Fibrous Minerals)
Figures

Figure 1

Open AccessArticle Prediction of Soluble Al2O3 in Calcined Kaolin Using Infrared Spectroscopy and Multivariate Calibration
Minerals 2018, 8(4), 136; https://doi.org/10.3390/min8040136
Received: 9 March 2018 / Revised: 25 March 2018 / Accepted: 26 March 2018 / Published: 28 March 2018
PDF Full-text (1454 KB) | HTML Full-text | XML Full-text
Abstract
In the production of calcined kaolin, the soluble Al2O3 content is used as a quality control criterion for some speciality applications. The increasing need for automated quality control systems in the industry has brought the necessity of developing techniques that
[...] Read more.
In the production of calcined kaolin, the soluble Al2O3 content is used as a quality control criterion for some speciality applications. The increasing need for automated quality control systems in the industry has brought the necessity of developing techniques that provide (near) real-time data. Based on the understanding that the presence of water in the calcined kaolin detected using infrared spectroscopy can be used as a proxy for the soluble Al2O3 measurement, in this study, a hand-held infrared spectrometer was used to analyse a set of calcined kaolin samples obtained from a production plant. The spectra were used to predict the amount of soluble Al2O3 in the samples by implementing partial least squares regression (PLS-R) and support vector regression (SVR) as multivariate calibration methods. The presence of non-linearities in the dataset and the different types of association between water and the calcined kaolin represented the main challenges for developing a good calibration. In general, SVR showed a better performance than PLS-R, with root mean squared error of the cross-validation (RMSECV) = 0.046 wt % and R 2 = 0.87 for the best-achieved prediction. This accuracy level is adequate for detecting variation trends in the production of calcined kaolin which could be used not only as a quality control strategy, but also for the optimisation of the calcination process. Full article
Figures

Figure 1

Open AccessArticle Hybrid Alkaline Cements: Bentonite-Opc Binders
Minerals 2018, 8(4), 137; https://doi.org/10.3390/min8040137
Received: 2 February 2018 / Revised: 23 March 2018 / Accepted: 27 March 2018 / Published: 29 March 2018
PDF Full-text (3165 KB) | HTML Full-text | XML Full-text
Abstract
Moderately alkaline activators can be used to formulate cementitious binders with a high Supplemetary Cementitious Materials (SCMs) and a low portland cement content (hybrid alkaline cements). This study aimed to prepare hybrid alkaline cements containing large percentages of dehydroxylated bentonite (BT) and small
[...] Read more.
Moderately alkaline activators can be used to formulate cementitious binders with a high Supplemetary Cementitious Materials (SCMs) and a low portland cement content (hybrid alkaline cements). This study aimed to prepare hybrid alkaline cements containing large percentages of dehydroxylated bentonite (BT) and small Portland cement (OPC) fractions, with 5% Na2SO4 as a solid alkaline activator. The hydration kinetics of the pastes hydrated in water in the presence and absence of the solid activator were assessed by isothermal conduction calorimetry, whilst the reaction products were characterised with X-Ray Powder Diffraction (XRD) and Fourier-transform Infrared Spectroscopy (FTIR). The presence of the alkaline activator hastened OPC and BT/OPC hydration: more heat of hydration was released, favouring greater initial bentonite reactivity. The portlandite forming during cement hydration reacted readily with the Na2SO4, raising medium alkalinity and enhancing bentonite dissolution and with it reaction product precipitation (primarily (N,C)-A-S-H-like gels that co-exist with C-S-H- or C-A-S-H-like gels). The presence of sulfate ions favoured the formation of AFm-like phases. Preceding aspects accelerated the hydration reactions, with the formation of more reaction product and matrix densification. As a result, the 28 days Na2SO4 activated systems developed greater mechanical strength than the water-hydrated systems, with the 60% BT/40% OPC blends exhibiting higher compressive strength than the 100% OPC pastes. Full article
(This article belongs to the Special Issue Geopolymers)
Figures

Figure 1a

Open AccessArticle Comparison of Wet and Dry Grinding in Electromagnetic Mill
Minerals 2018, 8(4), 138; https://doi.org/10.3390/min8040138
Received: 19 January 2018 / Revised: 20 March 2018 / Accepted: 27 March 2018 / Published: 29 March 2018
PDF Full-text (35099 KB) | HTML Full-text | XML Full-text
Abstract
Comparison of dry and wet grinding process in an electromagnetic mill is presented in this paper. The research was conducted in a batch copper ore grinding. Batch mode allows for precise parametrization and constant repetitive conditions of the experiments. The following key aspects
[...] Read more.
Comparison of dry and wet grinding process in an electromagnetic mill is presented in this paper. The research was conducted in a batch copper ore grinding. Batch mode allows for precise parametrization and constant repetitive conditions of the experiments. The following key aspects were tested: processing time, feed size, size of the grinding media, mass of the material and graining media, and density of the pulp. The particles size distribution of the product samples was analyzed in the laboratory after each experiment. The paper discusses the experimental results as well as the concept of dry and wet grinding and classification circuits for the electromagnetic mill. The main points of the discussion are the size reduction effectiveness and power consumption of the entire system. Full article
(This article belongs to the Special Issue Sustainable Mineral Processing Technologies)
Figures

Figure 1

Open AccessArticle Shock-Induced Olivine-Ringwoodite Transformation in the Shock Vein of Chondrite GRV053584
Minerals 2018, 8(4), 139; https://doi.org/10.3390/min8040139
Received: 2 February 2018 / Revised: 9 March 2018 / Accepted: 30 March 2018 / Published: 1 April 2018
PDF Full-text (16351 KB) | HTML Full-text | XML Full-text
Abstract
Shock metamorphism of minerals in meteorites could help to understand the shock history of its parent body and also provide a window into the interior of the Earth. Although shock features in olivine have been well known within and adjacent to shock melt
[...] Read more.
Shock metamorphism of minerals in meteorites could help to understand the shock history of its parent body and also provide a window into the interior of the Earth. Although shock features in olivine have been well known within and adjacent to shock melt veins and shock melt pockets in meteorites, there are processes that are not yet completely understood. Ringwoodite is formed by crystallization from olivine melts or solid-state phase transformation of olivine. Typically, olivine clasts with a ringwoodite rim around an olivine core have been documented from only a handful of meteorites. Here we report results from GRV053684, a highly shocked L6 chondrite that was collected by Chinese Antarctic Research Expedition in 2006 to Antarctica. The investigations of the shock pressure history and the transformation mechanism of olivine to ringwoodite use optical microscope, electron probe microanalyzer (backscattered electron images, major element quantitative analyses, and quantitative wavelength-dispersive spectrometry elemental X-ray maps), and Raman spectrograph. Ringwoodite in the shock melt vein generally displays as Fe-rich (Fa37-43) polycrystalline rims around Fe-poor (Fa11-20) olivine core and as small individual clasts embedded in shock melt vein matrix. The difference in FeO between ringwoodite rim and olivine core implies that Fe was preferentially partitioned to ringwoodite. The occurrence of maskelynite (An17) indicates a shock pressure ~30 GPa. The FeO and MgO diffusion indicates the transformation process of olivine to ringwoodite is a diffusion-controlled incoherent nucleation and growth. The spatial association between ringwoodite and the shock melt vein matrix suggests that high temperature plays a key role in prompting phase transformation. Full article
Figures

Figure 1

Open AccessArticle Undifferentiated Inorganics in Coal Fly Ash and Bottom Ash: Calcispheres, Magnesiacalcispheres, and Magnesiaspheres
Minerals 2018, 8(4), 140; https://doi.org/10.3390/min8040140
Received: 22 February 2018 / Revised: 23 March 2018 / Accepted: 26 March 2018 / Published: 2 April 2018
PDF Full-text (96216 KB) | HTML Full-text | XML Full-text
Abstract
During a study aiming to recover strategic elements and minerals from coal fly ash and bottom ash (RAREASH and CHARPHITE projects funded, respectively, by the 2nd ERA-MIN and 3rd ERA-MIN Programs of the European Union Commission), it was found that in coal fly
[...] Read more.
During a study aiming to recover strategic elements and minerals from coal fly ash and bottom ash (RAREASH and CHARPHITE projects funded, respectively, by the 2nd ERA-MIN and 3rd ERA-MIN Programs of the European Union Commission), it was found that in coal fly ash and bottom ash from Romania and Poland, several morphotypes did not fit into the general fly ash classifications, unless grouped together as “undifferentiated inorganics”. However, the combination of reflected light optical microscopy under oil immersion, scanning electron microscopy, and X-ray microanalysis (SEM/EDS) showed that many of these morphotypes not only have distinctive petrographic patterns but are also characterized by a chemical assemblage dominated by Ca, Mg, and P. In this paper, a survey of the literature is presented together with several detailed studies of samples from the RAREASH and CHARPHITE projects from which the following nomenclature are proposed: “calcispheres” for spongy Ca-rich morphotypes, “calcimagnesiaspheres” for (Ca + Mg)-rich morphotypes with visible MgO nodules and/or periclase (MgO) exsolved from Ca aluminate-silicate glass, and “magnesiaspheres” divided into “magnesiaferrospheres” for (Mg + Fe)-rich morphotypes with magnesioferrite, and “magnesiaoxyspheres” for magnesiaspheres mainly composed of (Mg + Fe)-rich amorphous material with visible MgO nodules and/or periclase. Full article
(This article belongs to the Special Issue Toxic Mineral Matter in Coal and Coal Combustion Products)
Figures

Figure 1

Open AccessArticle Effects of Metal Ions on the Flotation of Apatite, Dolomite and Quartz
Minerals 2018, 8(4), 141; https://doi.org/10.3390/min8040141
Received: 7 March 2018 / Revised: 25 March 2018 / Accepted: 26 March 2018 / Published: 2 April 2018
PDF Full-text (14982 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The effects of Ca2+, Mg2+, Al3+, and Fe3+ on the flotation behaviors of apatite, dolomite and quartz were investigated through a micro-flotation test, and the influence of calcium ions on the flotation of these minerals was
[...] Read more.
The effects of Ca2+, Mg2+, Al3+, and Fe3+ on the flotation behaviors of apatite, dolomite and quartz were investigated through a micro-flotation test, and the influence of calcium ions on the flotation of these minerals was further elucidated by solution chemistry study, zeta potential measurement, and X-ray photoelectron spectroscopy (XPS) analyses. The results indicate that an appropriate amount of Ca2+ and Mg2+ can improve the floatability of apatite but had a negligible effect on the flotation performance of dolomite, whereas Al3+, Fe3+, and excessive amounts of Ca2+ decreased the recovery of apatite and dolomite. The studied metal cations can activate quartz at a particular pH. It can be inferred from solution chemistry and zeta potential measurement that the influence of metal ions on the flotation of different minerals should be attributed to the adsorption of various hydrolysis species on the mineral surfaces. XPS analyses reveal that calcium ions can enhance the adsorption of anionic collector on apatite and quartz surfaces, and there are no apparent changes to be observed on the surface of dolomite in the absence and presence of calcium ions at a concentration of 2.5 × 10−3 M, which was in good agreement with the micro-flotation results. Full article
Figures

Figure 1

Open AccessArticle Performance Analysis of Thiocarbonohydrazide as a Novel Selective Depressant for Chalcopyrite in Molybdenite-Chalcopyrite Separation
Minerals 2018, 8(4), 142; https://doi.org/10.3390/min8040142
Received: 15 February 2018 / Revised: 16 March 2018 / Accepted: 16 March 2018 / Published: 2 April 2018
PDF Full-text (7654 KB) | HTML Full-text | XML Full-text
Abstract
A novel surfactant, thiocarbonohydrazide (TCH), was synthesized and tested for the first time as a selective chalcopyrite depressant in Cu-Mo separation. Its adsorption mechanisms on chalcopyrite were studied by flotation tests, zeta potential, FTIR, XPS and ToF-SIMS measurements. FTIR and zeta potential analyses
[...] Read more.
A novel surfactant, thiocarbonohydrazide (TCH), was synthesized and tested for the first time as a selective chalcopyrite depressant in Cu-Mo separation. Its adsorption mechanisms on chalcopyrite were studied by flotation tests, zeta potential, FTIR, XPS and ToF-SIMS measurements. FTIR and zeta potential analyses suggested that there was a strong chemisorption reaction between TCH and chalcopyrite, resulting in the formation of TCH–copper complexes. XPS and ToF-SIMS measurements further confirmed the chemisorption of TCH onto the chalcopyrite surface and showed that this chemisorption reaction is due to its S and N atoms, which form five-membered chelating rings by releasing H ions. Full article
(This article belongs to the Special Issue Flotation Chemistry)
Figures

Graphical abstract

Open AccessArticle Basic Characteristics of Hemimorphite and Its Transformation Mechanism with Na2CO3
Minerals 2018, 8(4), 143; https://doi.org/10.3390/min8040143
Received: 16 January 2018 / Revised: 26 March 2018 / Accepted: 29 March 2018 / Published: 3 April 2018
PDF Full-text (18610 KB) | HTML Full-text | XML Full-text
Abstract
The crystal of hemimorphite is a non-conductor. The Si–O bond in the crystal is strong, whereas the Zn–O bond is weak. These properties lead to the easy breakage of the Zn–O bond in the crushing process of hemimorphite. Thus, the interaction between minerals
[...] Read more.
The crystal of hemimorphite is a non-conductor. The Si–O bond in the crystal is strong, whereas the Zn–O bond is weak. These properties lead to the easy breakage of the Zn–O bond in the crushing process of hemimorphite. Thus, the interaction between minerals and polar water molecules is strong, and natural floatability of ores is poor. This study systematically investigated the characteristics of hemimorphite and its action mechanism with Na2CO3. Results of SEM-EDS showed that the surface of hemimorphite dissolved after interacting with Na2CO3, and the contents of Si and O decreased, whereas Zn and C increased. XPS analysis showed that the carbonate group was detected. The interaction between CO32− and hemimorphite was calculated using the first principles calculation based on density functional theory. The results indicate that an O atom in CO32− interacted with Zn2+ from the (100) plane of hemimorphite. The interaction between Zn and O atoms was not strong, and the Zn atoms were not completely displaced, which was proven by density of state analysis and the EDS and XPS results. The Mulliken population showed that the O–Zn bond was the atomic bonding of CO32− with Zn2+ and exhibited properties of ionic bonds. Thus, hemimorphite transformed to smithsonite-like mineral (ZnCO3) when acting with CO32−. Full article
Figures

Figure 1

Open AccessArticle The Merensky Cyclic Unit, Bushveld Complex, South Africa: Reality or Myth?
Minerals 2018, 8(4), 144; https://doi.org/10.3390/min8040144
Received: 21 February 2018 / Revised: 26 March 2018 / Accepted: 28 March 2018 / Published: 3 April 2018
PDF Full-text (6183 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The Merensky Unit, Bushveld Complex, is commonly described using genetic terms such as “cyclic unit”, typically without careful consideration of the connotations. We suggest that this contributes to the debate on processes forming the unit. This study integrates an extensive field study with
[...] Read more.
The Merensky Unit, Bushveld Complex, is commonly described using genetic terms such as “cyclic unit”, typically without careful consideration of the connotations. We suggest that this contributes to the debate on processes forming the unit. This study integrates an extensive field study with detailed petrographic and textural analyses of the Merensky Unit to determine whether it is a “cyclic unit” sensu stricto. The study indicates that the bulk of the platinum-bearing chromitite-feldspathic orthopyroxenite developed through heterogeneous nucleation and in situ growth during multiple replenishment events. The overlying leuconorite developed above a gradational boundary, reflecting mixing following replenishment by a relatively more evolved magma. The bulk of this unit also formed in situ. The uppermost poikilitic anorthosite formed above a distinct boundary through a subsequent injection of a plagioclase-saturated magma, which crystallised in situ. Processes of gravitational settling and local remobilisation of crystals cannot be discounted from contributing to the development of the unit. The final textures throughout the unit developed through pervasive textural equilibration, with extensive fluid-mediated textural equilibration forming the megacrystic feldspathic orthopyroxenite. The evidence for at least five replenishment events indicates that the Merensky Unit is not a cyclic unit; therefore, the genetic term, “Merensky Cyclic Unit”, is misleading and its use should be carefully considered in future work. Full article
Figures

Graphical abstract

Open AccessArticle Preparation of Amino Functionalized Hydrophobic Zeolite and Its Adsorption Properties for Chromate and Naphthalene
Minerals 2018, 8(4), 145; https://doi.org/10.3390/min8040145
Received: 24 February 2018 / Revised: 25 March 2018 / Accepted: 2 April 2018 / Published: 5 April 2018
PDF Full-text (11856 KB) | HTML Full-text | XML Full-text
Abstract
Amino functionalized hydrophobic zeolite was prepared by modification of natural zeolite with 3-aminopropyltrimethoxysilane. X-ray diffraction, Fourier transform infrared analysis, thermal gravimetric analysis, Brunauer-Emmett-Teller surface areas, and element analysis were employed to investigate the structures of the samples. The water vapor adsorption method was
[...] Read more.
Amino functionalized hydrophobic zeolite was prepared by modification of natural zeolite with 3-aminopropyltrimethoxysilane. X-ray diffraction, Fourier transform infrared analysis, thermal gravimetric analysis, Brunauer-Emmett-Teller surface areas, and element analysis were employed to investigate the structures of the samples. The water vapor adsorption method was used to determine the hydrophobicity of the samples. The adsorption properties of the samples for chromate and naphthalene were then investigated. The results showed that the silane modification had a negligible effect on the crystalline structure of zeolite while significantly decreasing the specific surface area and increasing the hydrophobicity of the zeolite sample. The functionalized zeolite samples exhibit higher adsorption capacity and removal rate on chromate and naphthalene as compared with the unmodified zeolite sample due to their specific amino functional group and hydrophobicity property. Full article
Figures

Figure 1

Open AccessArticle The Role of Clay Swelling and Mineral Neoformation in the Stabilization of High Plasticity Soils Treated with the Fly Ash- and Metakaolin-Based Geopolymers
Minerals 2018, 8(4), 146; https://doi.org/10.3390/min8040146
Received: 23 February 2018 / Revised: 29 March 2018 / Accepted: 2 April 2018 / Published: 7 April 2018
PDF Full-text (8502 KB) | HTML Full-text | XML Full-text
Abstract
In the southern U.S. states, expansive soils are frequently encountered, presenting an important hazard in geotechnical engineering. This research relies on mineralogical and geochemical clues to explain the swelling behavior of smectite-rich, high-plasticity soils, documented in a series of geomechanical swelling tests that
[...] Read more.
In the southern U.S. states, expansive soils are frequently encountered, presenting an important hazard in geotechnical engineering. This research relies on mineralogical and geochemical clues to explain the swelling behavior of smectite-rich, high-plasticity soils, documented in a series of geomechanical swelling tests that were performed on the soils stabilized with the metakaolin (MKG) and fly ash (FAG) based geopolymers. These geopolymers were mixed with the soil at several concentration levels. The lowest swelling percentage was shown to correspond to the sample stabilized with 12% FAG and was attributed to the neoformation of calcium silicate hydrates that acted as a cementitious material, preventing the soil from expanding by occupying the pore space, thus binding the clay particles together. Conversely, the 12% MKG-stabilized soil exhibited enormous expansion, which was explained by montmorillonite swelling to the point that it gradually began to lose its structural periodicity. The relatively high abundance of the newly formed feldspathoids in MKG-treated samples is believed to have greatly contributed to the overall soil expansion. Finally, the cation exchange capacity tests showed that the percentage of Na+ and Ca2+, as well as the pH value, exercised strong control on the swelling behavior of smectitic soils. Full article
(This article belongs to the Special Issue Geopolymers)
Figures

Figure 1

Open AccessArticle The Shah-Ali-Beiglou Zn-Pb-Cu (-Ag) Deposit, Iran: An Example of Intermediate Sulfidation Epithermal Type Mineralization
Minerals 2018, 8(4), 148; https://doi.org/10.3390/min8040148
Received: 25 December 2017 / Revised: 14 March 2018 / Accepted: 29 March 2018 / Published: 10 April 2018
PDF Full-text (89443 KB) | HTML Full-text | XML Full-text
Abstract
The Shah-Ali-Beiglou epithermal base metal-silver deposit is located in the Tarom-Hashjin metallogenic province (THMP) in northwestern Iran. This deposit is hosted by quartz monzonite dikes of Oligocene age and surrounded by andesite to trachyandesite volcanic and volcaniclastic rocks of Eocene age. The subvolcanic
[...] Read more.
The Shah-Ali-Beiglou epithermal base metal-silver deposit is located in the Tarom-Hashjin metallogenic province (THMP) in northwestern Iran. This deposit is hosted by quartz monzonite dikes of Oligocene age and surrounded by andesite to trachyandesite volcanic and volcaniclastic rocks of Eocene age. The subvolcanic rocks in the study area vary in composition from quartz-monzonite to monzonite and have metaluminous, calc-alkaline to shoshonitic affinity. These rocks have I-type geochemical characteristic and are related to post-collisional tectonic setting. The mineralization occurs as NE-SW and E-W-trending brecciated veins controlled by strike-slip and normal faults, which are associated to the Late Oligocene compressional regime. The mineral paragenesis of the vein mineralization is subdivided into pre-ore stage, ore stage, post-ore stage, and supergene stage. Pre-ore stage is dominated by quartz, sericite, and subhedral to anhedral pyrite as disseminated form. Ore-stage is represented by quartz, sphalerite (from 0.1 mol % to 4 mol % FeS), galena, chalcopyrite, tetrahedrite-tennantite, minor seligmannite and enargite, as vein-veinlet, cement and clast breccias. Post-ore stage is defined by deposition of quartz and carbonate along with minor barite, and supergene stage is characterized by bornite, chalcocite, covellite, hematite, goethite, and jarosite. The ore mineralization is associated with the silicic alteration. The styles of alteration are silicic, carbonate, sericitic, chloritic, and propylitic. Fluid inclusions in sphalerite have a wide range of salinities between 0.35 wt % and 21.4 wt % NaCl equivalent and homogenization temperatures range from 123 to 320 °C. The isotopic values of sulfides vary from 2.8‰ to 6.7‰ suggesting a magmatic source for the sulfur. In the present study, based on geological setting, alteration style of the host and wall rocks, main textures, mineral assemblages, composition of ore minerals, and structural features, it is suggested that the mineralization in the Shah-Ali-Beiglou is similar to intermediate-sulfidation style of epithermal deposits. Full article
Figures

Graphical abstract

Open AccessArticle Developing Effective Separation of Feldspar and Quartz While Recycling Tailwater by HF Pretreatment
Minerals 2018, 8(4), 149; https://doi.org/10.3390/min8040149
Received: 23 February 2018 / Revised: 2 April 2018 / Accepted: 5 April 2018 / Published: 11 April 2018
PDF Full-text (24110 KB) | HTML Full-text | XML Full-text
Abstract
The effect of hydrofluoric acid (HF) pretreatment on flotation of feldspar and quartz using dodecylamine (DDA) as collector was investigated by micro-flotation, zeta potential, pyrene fluorescence spectroscopy, attenuated total reflection flourier transformed infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS)
[...] Read more.
The effect of hydrofluoric acid (HF) pretreatment on flotation of feldspar and quartz using dodecylamine (DDA) as collector was investigated by micro-flotation, zeta potential, pyrene fluorescence spectroscopy, attenuated total reflection flourier transformed infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and bench scale flotation. The micro-flotation tests revealed that there was little difference in the flotation of feldspar and quartz at pH 2, using H2SO4 as pH regulator. After HF pretreatment, the floatability of feldspar significantly increased while the floatability of quartz showed no change. HF pretreatment resulted in leaching of SiO2 and enrichment of Na, K and Al on the feldspar surface. Consequently, the negative surface charge of feldspar increased at pH 2, which allowed for the flotation separation of the feasible minerals. This took place via an increased electrostatic adsorption between DDA and Na, K, Al on the feldspar surface, which effectively increased its hydrophobicity and as a result, improved the floatability of feldspar. An alternative process which exhibited effective separation of quartz and feldspar while recycling the tailwater from the flotation was proposed. Full article
(This article belongs to the Special Issue Sustainable Mineral Processing Technologies)
Figures

Graphical abstract

Open AccessArticle The Influencing Mechanisms of Sodium Hexametaphosphate on Chalcopyrite Flotation in the Presence of MgCl2 and CaCl2
Minerals 2018, 8(4), 150; https://doi.org/10.3390/min8040150
Received: 26 March 2018 / Revised: 5 April 2018 / Accepted: 8 April 2018 / Published: 11 April 2018
PDF Full-text (61571 KB) | HTML Full-text | XML Full-text
Abstract
Sea water has been used in flotation plants, showing a promising way to save fresh water usage. Previous studies indicated that divalent salts in sea water played negative roles in chalcopyrite flotation, but not much work have been conducted to understand the eliminating
[...] Read more.
Sea water has been used in flotation plants, showing a promising way to save fresh water usage. Previous studies indicated that divalent salts in sea water played negative roles in chalcopyrite flotation, but not much work have been conducted to understand the eliminating mechanisms. This study systematically investigated the effects of divalent cations of Ca2+ and Mg2+ on natural flotability of chalcopyrite in the absence of collectors and frothers. The reduced recovery was mainly due to the adsorption of Mg and Ca hydroxyl complexes and precipitation on chalcopyrite surfaces, giving rise to a less hydrophobic surface. The addition of sodium hexametaphosphate (SHMP), however, significantly improved chalcopyrite recovery. Species calculation, contact angle, zeta potential, FTIR and XPS analyses were conducted to understand the influencing mechanisms of divalent ions and the beneficial effects of SHMP on chalcopyrite recovery. The primary mechanism was that SHMP prevented the adsorption of positively charged Mg and Ca compounds or precipitation with hydrophilic properties such as Mg(OH)2 on chalcopyrite surfaces, confirmed by the Derjguin-Landau-Verwey-Overbeek (DLVO) theory. Secondly, SHMP reacted with Mg2+ and Ca2+ to form dissolvable complexes, thereby declining the formation of insoluble Mg2+ and Ca2+ compounds or precipitation. Full article
Figures

Graphical abstract

Open AccessArticle Quantitative Mineralogical Comparison between HPGR and Ball Mill Products of a Sn-Ta Ore
Minerals 2018, 8(4), 151; https://doi.org/10.3390/min8040151
Received: 16 February 2018 / Revised: 4 April 2018 / Accepted: 5 April 2018 / Published: 11 April 2018
Cited by 1 | PDF Full-text (40987 KB) | HTML Full-text | XML Full-text
Abstract
The mineralogy and liberation characteristics of the comminuted Penouta leucogranite host of the Sn-Ta ore were determined. Grinding developed by a combination of high-pressure grinding rolls (HPGR) followed by a ball mill (BM) was compared with a single ball mill process. The mineral
[...] Read more.
The mineralogy and liberation characteristics of the comminuted Penouta leucogranite host of the Sn-Ta ore were determined. Grinding developed by a combination of high-pressure grinding rolls (HPGR) followed by a ball mill (BM) was compared with a single ball mill process. The mineral characteristics of the grinding products were analyzed using a Tescan Integrated Mineralogical Analyzer (TIMA-X) and X-ray powder diffraction (XRD). The ore contains 103 ppm of Ta and is mainly composed of quartz, albite, microcline, muscovite, and kaolinite. Nb, Ta-rich minerals are columbite-(Mn) and tantalite-(Mn), as well as minor microlite and wodginite. The liberation in the product is high in the size fraction of less than 250 µm (51–52 wt % for columbite-group minerals (CGM) and 74–80 wt % for cassiterite) and reduced in larger particles (8.8–17 wt % for CGM and 28–37 wt % for cassiterite). The recovery in the −250 µm fraction was high, while in the larger fraction it is limited, remaining up to 80 ppm in some tailings. The combined use of HPGR and a BM reduces the particle size distribution of the product and, thus, increases the liberation of the ores. Smaller fractions can be treated directly using gravity methods; however, particles of a size greater than +250 µm should be ground more. Full article
(This article belongs to the Special Issue Process Mineralogy of Critical Metals)
Figures

Figure 1

Open AccessArticle Tiberiobardiite, Cu9Al(SiO3OH)2(OH)12(H2O)6(SO4)1.5·10H2O, a New Mineral Related to Chalcophyllite from the Cretaio Cu Prospect, Massa Marittima, Grosseto (Tuscany, Italy): Occurrence and Crystal Structure
Minerals 2018, 8(4), 152; https://doi.org/10.3390/min8040152
Received: 23 March 2018 / Revised: 6 April 2018 / Accepted: 9 April 2018 / Published: 11 April 2018
PDF Full-text (1274 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The new mineral species tiberiobardiite, ideally Cu9Al(SiO3OH)2(OH)12(H2O)6(SO4)1.5·10H2O, has been discovered in the Cretaio Cu prospect, Massa Marittima, Grosseto, Tuscany, Italy, as very rare, light green,
[...] Read more.
The new mineral species tiberiobardiite, ideally Cu9Al(SiO3OH)2(OH)12(H2O)6(SO4)1.5·10H2O, has been discovered in the Cretaio Cu prospect, Massa Marittima, Grosseto, Tuscany, Italy, as very rare, light green, vitreous, tabular {0001}, pseudo-hexagonal crystals, up to 200 μm in size and 5 μm in thickness, associated with brochantite. Electron microprobe analysis gave (in wt %, average of 5 spot analyses): SO3 10.37, P2O5 3.41, As2O5 0.05, SiO2 8.13, Al2O3 5.54, Fe2O3 0.74, CuO 62.05, and ZnO 0.03, for a total of 90.32. Based on an idealized O content of 42 atoms per formula unit, assuming the presence of 16 H2O groups and 13.5 cations (without H), the empirical formula of tiberiobardiite is (Cu8.69Al0.21Fe0.10)Σ9.00Al1.00(Si1.51P0.54)Σ2.05S1.44O12.53(OH)13.47·16H2O. The main diffraction lines, corresponding to multiple hkl indices, are [d in Å (relative visual intensity)]: 9.4 (s), 4.67 (s), 2.576 (m), 2.330 (m), and 2.041 (mw). The crystal structure study revealed tiberiobardiite to be trigonal, space group R 3 ¯ , with unit-cell parameters a = 10.6860(4), c = 28.3239(10) Å, V = 2801.0(2) Å3, and Z = 3. The crystal structure was refined to a final R1 = 0.060 for 1747 reflections with Fo > 4σ (Fo) and 99 refined parameters. Tiberiobardiite is the Si-analogue of chalcophyllite, with Si4+ replacing As5+ through the coupled substitution As5+ + O2− = Si4+ + (OH). The name tiberiobardiite honors Tiberio Bardi (b. 1960) for his contribution to the study of the mineralogy of Tuscany. Full article
(This article belongs to the Special Issue New Mineral Species and Their Crystal Structures)
Figures

Figure 1

Open AccessArticle Application of Scanning Precession Electron Diffraction in the Transmission Electron Microscope to the Characterization of Deformation in Wadsleyite and Ringwoodite
Minerals 2018, 8(4), 153; https://doi.org/10.3390/min8040153
Received: 19 March 2018 / Revised: 7 April 2018 / Accepted: 10 April 2018 / Published: 12 April 2018
PDF Full-text (24119 KB) | HTML Full-text | XML Full-text
Abstract
The mantle transition zone represents an important layer in the interior of the Earth that is characterized by phase transformations of olivine polymorphs. Constraining the rheology difference between wadsleyite and ringwoodite is important in determining the viscosity contrast at a depth of 520
[...] Read more.
The mantle transition zone represents an important layer in the interior of the Earth that is characterized by phase transformations of olivine polymorphs. Constraining the rheology difference between wadsleyite and ringwoodite is important in determining the viscosity contrast at a depth of 520 km. In this study, we perform a post-mortem by transmission electron microscopy of a wadsleyite + ringwoodite aggregate, deformed at high-pressure and high-temperature, in a deformation-DIA apparatus. From orientation maps acquired by scanning precession electron diffraction, we calculate local misorientations and misorientation-gradients, which are used as a proxy of plastic strain. We show that at 17.3 GPa, 1700 K, the plastic responses of wadsleyite and ringwoodite are comparable, although recovery by subgrain boundary migration is more easily activated in wadsleyite. Full article
Figures

Figure 1a

Open AccessArticle Improving the Total Organic Carbon Estimation of the Eagle Ford Shale with Density Logs by Considering the Effect of Pyrite
Minerals 2018, 8(4), 154; https://doi.org/10.3390/min8040154
Received: 20 February 2018 / Revised: 2 April 2018 / Accepted: 8 April 2018 / Published: 12 April 2018
PDF Full-text (3739 KB) | HTML Full-text | XML Full-text
Abstract
Pyrite is a common mineral with a higher density than most other minerals in the Eagle Ford Shale formation. Hence, if pyrite is not considered in the total organic carbon (TOC) estimation, based on density logs, it may lead to errors. In order
[...] Read more.
Pyrite is a common mineral with a higher density than most other minerals in the Eagle Ford Shale formation. Hence, if pyrite is not considered in the total organic carbon (TOC) estimation, based on density logs, it may lead to errors. In order to improve the accuracy of the TOC estimation, we propose an updated TOC estimation method that incorporates the concentration of pyrite and organic porosity. More than 15 m of Eagle Ford Shale samples were analyzed using Rock-Eval pyrolysis, X-ray fluorescence (XRF), and X-ray diffraction (XRD). TOC, elemental concentration, and mineralogical data were analyzed for a better understanding of the relationship between the concentration of TOC and pyrite content in the Eagle Ford formation. An updated petrophysical model—including parameters such as organic pores, solid organic matter, inorganic pores, pyrite, and inorganic rock matrix without pyrite—was built using the sample data from the Eagle Ford. The model was compared with Schmoker’s model and validated with the Eagle Ford field data. The results showed that the updated model had a lower root mean square error (RMSE) than Schmoker’s model. Therefore, it could be used in the future estimation of TOC in pyrite-rich formations. Full article
Figures

Figure 1

Open AccessArticle Formation of Fe- and Mg-Rich Smectite under Hyperalkaline Conditions at Narra in Palawan, the Philippines
Minerals 2018, 8(4), 155; https://doi.org/10.3390/min8040155
Received: 5 February 2018 / Revised: 30 March 2018 / Accepted: 8 April 2018 / Published: 12 April 2018
PDF Full-text (4633 KB) | HTML Full-text | XML Full-text
Abstract
The formation of Fe- and Mg-rich smectite and zeolite under alkaline conditions, as secondary minerals after the alkaline alteration of bentonite in repositories for radioactive waste, is of major concern. It is crucial for safety assessments to know whether smectite is formed as
[...] Read more.
The formation of Fe- and Mg-rich smectite and zeolite under alkaline conditions, as secondary minerals after the alkaline alteration of bentonite in repositories for radioactive waste, is of major concern. It is crucial for safety assessments to know whether smectite is formed as a secondary mineral after the alkaline alteration of bentonite. In the present paper, Fe- and Mg-rich smectite, which interacted with the hyperalkaline groundwater at Narra in Palawan, Philippines, was used. Mineralogical and geochemical investigation was conducted to understand the formation process of the smectite and the factors determining the formation of secondary mineral species. The results suggest that a certain amount of smectite may be generated under hyperalkaline conditions, by alteration from amorphous or poorly crystalline components such as M-S-H and F-S-H. Therefore, the controlling factor determining whether smectite or zeolite will be generated as secondary minerals after alkaline alteration of bentonite could be whether nuclei of M-S-H and/or F-S-H are formed. Whether such formation takes place may be determined by the presence of dissolved Mg2+ and Fe2+ in the environment. The formation process of smectite under alkaline conditions, suggested by the results here, is analogous to the generally accepted model of smectite formation as it may have occurred on early Mars. Full article
(This article belongs to the Special Issue Environmental Mineralogy)
Figures

Figure 1

Open AccessArticle Analysis of Potential for Critical Metal Resource Constraints in the International Energy Agency’s Long-Term Low-Carbon Energy Scenarios
Minerals 2018, 8(4), 156; https://doi.org/10.3390/min8040156
Received: 27 December 2017 / Revised: 28 March 2018 / Accepted: 10 April 2018 / Published: 12 April 2018
PDF Full-text (22637 KB) | HTML Full-text | XML Full-text
Abstract
As environmental problems associated with energy systems become more serious, it is necessary to address them with consideration of their interconnections—for example, the energy-mineral nexus. Specifically, it is unclear whether long-term energy scenarios assuming the expansion of low carbon energy technology are sustainable
[...] Read more.
As environmental problems associated with energy systems become more serious, it is necessary to address them with consideration of their interconnections—for example, the energy-mineral nexus. Specifically, it is unclear whether long-term energy scenarios assuming the expansion of low carbon energy technology are sustainable in terms of resource constraints. However, there are few studies that comprehensively analyze the possibility of resource constraints in the process of introducing low carbon energy technology from a long-term perspective. Hence, to provide guidelines for technological development and policy-making toward realizing the low carbon society, this paper undertakes the following: (1) Estimation of the impact of the expansion of low carbon energy technology on future metal demand based, on the International Energy Agency (IEA)’s scenarios; (2) estimation of the potential effects of low carbon energy technology recycling on the future supply-demand balance; (3) identification of critical metals that require priority measures. Results indicated that the introduction of solar power and next-generation vehicles may be hindered by resource depletion. Among the metals examined, indium, tellurium, silver, lithium, nickel and platinum were identified as critical metals that require specific measures. As recycling can reduce primary demand by 20%~70% for low carbon energy technology, countermeasures including recycling need to be considered. Full article
(This article belongs to the Special Issue Critical Minerals: Methodologies and Case Studies)
Figures

Graphical abstract

Open AccessArticle Characteristic and Geological Implications of Major Elements and Rare Earth Elements of Triassic Chang 7 Oil Shale in Tongchuan City, Southern Ordos Basin (China)
Minerals 2018, 8(4), 157; https://doi.org/10.3390/min8040157
Received: 19 February 2018 / Revised: 17 March 2018 / Accepted: 9 April 2018 / Published: 12 April 2018
PDF Full-text (19120 KB) | HTML Full-text | XML Full-text
Abstract
The study of the oil shale from Triassic Chang 7 oil layer in Ordos Basin is of great importance to oil and gas resources investigation. Based on systematic analyses of major elements and rare earth elements of twelve oil shale samples and grain
[...] Read more.
The study of the oil shale from Triassic Chang 7 oil layer in Ordos Basin is of great importance to oil and gas resources investigation. Based on systematic analyses of major elements and rare earth elements of twelve oil shale samples and grain size analyses of four sandstone samples from the Yishicun Profile in southern Ordos Basin, the elements characteristics and corresponding geological implications are discussed. The Al/Si and Si/(Si + Al + Fe) of oil shale samples are in small range, with the averages of 0.29 and 0.67, indicating that quartz is the main mineral and the oil shale deposits near terrigenous provenance. Rare earth elements of the oil shale illustrate the enrichment of light rare earth elements (LREEs) and deficit of heavy rare earth elements (HREEs). The Chondrite- and North American shale composite (NASC)-normalized distributing patterns manifested that the oil shale have been derived from the same terrigenous source and controlled by a similar sedimentary environment. The vertical variation of major elements and REEs show that the heterogeneity of oil shale samples is relatively low. By grain size analysis, the interlayer sandstone is the typical turbidite. The Chemical index of alteration (CIA) and (Fe + Mn)/Ti of the oil shale samples ranges in 65.02–78.09 and 6.60–25.82, respectively, indicating that during oil shale sedimentation, the paloeclimate is warm and humid with moderate chemical weathering and that there are obviously hydrothermal fliud activities. The correlation between δCeN and δEuN, total rare earth elements (ΣREE) and (Dy/Sm)N, implying that the diagenesis of oil shale is relatively low with middle diagenetic stage A period. The Ceanom of oil shale samples ranges from −0.094 to −0.049, suggesting that the redox condition of oil shale sedimentation is dominated by strong reducing condition, and the (La/Yb)n is from 1.3 to 2.1, manifesting the whole sedimentary rate of oil shale is relatively low. By the comparison with REEs distribution characteristics from surrounding potential provenance, the main provenances of Chang 7 sedimentation in southern Ordos Basin are from Yinshan Mountain and Qinling-Dabie Mountain. Full article
Figures

Figure 1

Open AccessArticle The Evidence of Decisive Effect of Both Surface Microstructure and Speciation of Chalcopyrite on Attachment Behaviors of Extreme Thermoacidophile Sulfolobus metallicus
Minerals 2018, 8(4), 159; https://doi.org/10.3390/min8040159
Received: 25 January 2018 / Revised: 4 April 2018 / Accepted: 9 April 2018 / Published: 13 April 2018
PDF Full-text (14366 KB) | HTML Full-text | XML Full-text
Abstract
The effect of the surface microstructure and chemical speciation of chalcopyrite on the attachment behaviors of thermoacidophilic archaeon Sulfolobus metallicus was evaluated for the first time by using integrated techniques including epifluorescence microscopy (EFM) and sulfur K-edge X-ray absorption near edge structure (S
[...] Read more.
The effect of the surface microstructure and chemical speciation of chalcopyrite on the attachment behaviors of thermoacidophilic archaeon Sulfolobus metallicus was evaluated for the first time by using integrated techniques including epifluorescence microscopy (EFM) and sulfur K-edge X-ray absorption near edge structure (S K-edge XANES) spectroscopy, as well as scanning electron microscopy with energy dispersive spectrometry (SEM/EDS) and Fourier transform infrared (FT-IR) spectroscopy. In order to obtain the specific surface, the chalcopyrite slices were electrochemically oxidized at 0.87 V and reduced at −0.54 V, respectively. The EFM analysis showed that the quantity of cells attaching on the mineral surface increased with time, and the biofilm formed faster on the electrochemically treated slices than on the untreated ones. The SEM-EDS analysis indicated that the deficiency in energy substrate elemental sulfur (S0) in the specific microsize of local defect sites was disadvantageous to the initial attachment of cells. The XANES and FT-IR data suggested that the elemental sulfur (S0) could be in favor of initial attachment, and surface jarosites inhibited the adsorption and growth of S. metallicus. These results demonstrated that not only the surface microstructure but also the chemical speciation defined the initial attachment behaviors and biofilm growth of the extreme thermophilic archaeon S. metallicus. Full article
(This article belongs to the collection Bioleaching)
Figures

Figure 1

Open AccessArticle Experimental Evaluation of Efficient Si Dissolution from Perlite at Low Level Activator’s Concentration
Minerals 2018, 8(4), 160; https://doi.org/10.3390/min8040160
Received: 20 March 2018 / Revised: 29 March 2018 / Accepted: 30 March 2018 / Published: 14 April 2018
PDF Full-text (3037 KB) | HTML Full-text | XML Full-text
Abstract
This paper deals with the Si dissolution of fine perlite in alkaline solutions for the determination of the SiO2/Na2O mass ratio in the aqueous phase of geopolymer slurries. In the present work, the effect of the main synthesis parameters
[...] Read more.
This paper deals with the Si dissolution of fine perlite in alkaline solutions for the determination of the SiO2/Na2O mass ratio in the aqueous phase of geopolymer slurries. In the present work, the effect of the main synthesis parameters such as NaOH concentration and curing temperature on the setting time of the paste were studied. The obtained results showed that the inorganic polymer pastes present fast hardening at low concentrations of NaOH solutions for both 70 and 90 °C. This observation was also identified by the Si dissolution study of perlite pastes as a function of different concentrations of NaOH solutions and different solid to liquid ratios of the slurries, under a constant temperature. The optimum synthesis conditions for geopolymer pastes proved to be a low initial NaOH concentration in the alkaline phase (2–4 M NaOH), where the fast hardening of the paste was attributed to the high SiO2/Na2O mass ratio, enhancing the polycondensation phenomena and promoting the geopolymerization process. Full article
(This article belongs to the Special Issue Geopolymers)
Figures

Figure 1

Open AccessArticle Lauric Acid Hybridizing Fly Ash Composite for Thermal Energy Storage
Minerals 2018, 8(4), 161; https://doi.org/10.3390/min8040161
Received: 27 February 2018 / Revised: 8 April 2018 / Accepted: 11 April 2018 / Published: 16 April 2018
PDF Full-text (14033 KB) | HTML Full-text | XML Full-text
Abstract
Fly ash includes different mineral phases. This paper reported on the preparation of a novel lauric acid (LA)/fly ash (FA) composite by vacuum impregnation as a form-stable phase change material (PCM) for thermal energy, and especially investigated the effect of the hydrochloric acid-treated
[...] Read more.
Fly ash includes different mineral phases. This paper reported on the preparation of a novel lauric acid (LA)/fly ash (FA) composite by vacuum impregnation as a form-stable phase change material (PCM) for thermal energy, and especially investigated the effect of the hydrochloric acid-treated fly ash (FAh) on the thermal energy storage performance of the composites. The morphology, crystalline structure, and porous textures of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), X-ray fluorescence (XRF), and differential scanning calorimetry (DSC). The results indicated that hydrochloric acid treatment was beneficial to the increase of loading capacity and crystallinity of LA in the LA/FAh composite, which caused an enhanced thermal storage capacity with latent heats for melting and freezing of LA/FAh (80.94 and 77.39 J/g), higher than those of LA/FA (34.09 and 32.97 J/g), respectively. Furthermore, the mechanism of enhanced thermal storage properties was investigated in detail. Full article
(This article belongs to the Special Issue Mineral Materials)
Figures

Figure 1a

Open AccessArticle Property and Microstructure of Waterborne Self-Setting Geopolymer Coating: Optimization Effect of SiO2/Na2O Molar Ratio
Minerals 2018, 8(4), 162; https://doi.org/10.3390/min8040162
Received: 12 February 2018 / Revised: 31 March 2018 / Accepted: 13 April 2018 / Published: 17 April 2018
PDF Full-text (9111 KB) | HTML Full-text | XML Full-text
Abstract
As a kind of coating material, the inorganic coating of alkali-activated metakaolin geopolymer cured at high temperature has been studied a lot for special applications. To our best knowledge, however, not much attention has been given to investigate the influence of SiO2
[...] Read more.
As a kind of coating material, the inorganic coating of alkali-activated metakaolin geopolymer cured at high temperature has been studied a lot for special applications. To our best knowledge, however, not much attention has been given to investigate the influence of SiO2/Na2O molar ratio on property of the geopolymer coating. This paper is, thus, dedicated to investigate the role of SiO2/Na2O molar ratio on property and microstructure of metakaolin-based geopolymer coating at ambient temperature. The effects on setting behavior, adhesive strength, shrinkage deformation and permeability are discussed. Multiple experiments were used to reveal microstructure changes of the geopolymer coating with different ratios of SiO2/Na2O, including Mercury Intrusion Porosimetry (MIP), Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The results indicated that the optimal ratio of SiO2/Na2O was 1.0 for good properties of adhesive strength, shrinkage and impermeability. In addition, it has been found that the setting time of geopolymer coating increased with SiO2/Na2O ratio which increased from 0.8 to 1.5. That agrees well with the other property and results of exothermal rate of alkali-activated metakaolin. As for the microstructural changes, the SiO2/Na2O ratio of 1.0 reduced pore size and porosity of the geopolymer coating and particularly increased volume percentage of pores with a size lower than 20 nm. Besides, FTIR results suggested that geopolymer prepared by the ratio of 1.0 was likely to produce more heterogeneous geopolymer due to a greater silicate structural reorganization. Full article
(This article belongs to the Special Issue Geopolymers)
Figures

Figure 1

Open AccessArticle Pore Structure and Fractal Characteristics of Niutitang Shale from China
Minerals 2018, 8(4), 163; https://doi.org/10.3390/min8040163
Received: 14 March 2018 / Revised: 9 April 2018 / Accepted: 12 April 2018 / Published: 17 April 2018
PDF Full-text (15407 KB) | HTML Full-text | XML Full-text
Abstract
A suite of shale samples from the Lower Cambrian Niutitang Formation in northwestern Hunan Province, China, were investigated to better understand the pore structure and fractal characteristics of marine shale. Organic geochemistry, mineralogy by X-ray diffraction, porosity, permeability, mercury intrusion and nitrogen adsorption
[...] Read more.
A suite of shale samples from the Lower Cambrian Niutitang Formation in northwestern Hunan Province, China, were investigated to better understand the pore structure and fractal characteristics of marine shale. Organic geochemistry, mineralogy by X-ray diffraction, porosity, permeability, mercury intrusion and nitrogen adsorption and methane adsorption experiments were conducted for each sample. Fractal dimension D was obtained from the nitrogen adsorption data using the fractal Frenkel-Halsey-Hill (FHH) model. The relationships between total organic carbon (TOC) content, mineral compositions, pore structure parameters and fractal dimension are discussed, along with the contributions of fractal dimension to shale gas reservoir evaluation. Analysis of the results showed that Niutitang shale samples featured high TOC content (2.51% on average), high thermal maturity (3.0% on average), low permeability and complex pore structures, which are highly fractal. TOC content and mineral compositions are two major factors affecting pore structure but they have different impacts on the fractal dimension. Shale samples with higher TOC content had a larger specific surface area (SSA), pore volume (PV) and fractal dimension, which enhanced the heterogeneity of the pore structure. Quartz content had a relatively weak influence on shale pore structure, whereas SSA, PV and fractal dimension decreased with increasing clay mineral content. Shale with a higher clay content weakened pore structure heterogeneity. The permeability and Langmuir volume of methane adsorption were affected by fractal dimension. Shale samples with higher fractal dimension had higher adsorption capacity but lower permeability, which is favorable for shale gas adsorption but adverse to shale gas seepage and diffusion. Full article
Figures

Figure 1

Open AccessArticle Source and Enrichment of Toxic Elements in Coal Seams around Mafic Intrusions: Constraints from Pyrites in the Yuandian Coal Mine in Anhui, Eastern China
Minerals 2018, 8(4), 164; https://doi.org/10.3390/min8040164
Received: 7 March 2018 / Revised: 8 April 2018 / Accepted: 8 April 2018 / Published: 17 April 2018
PDF Full-text (3405 KB) | HTML Full-text | XML Full-text
Abstract
Pyrite, a mineral that can cause potential environmental issues in coal mining, is commonly found in coal seams around intrusions. In this paper, pyrites from the Yuandian Coal Mine (Huaibei Coalfield, Anhui, Eastern China) were studied using SEM, Raman and LA-ICP-MS. The pyrite
[...] Read more.
Pyrite, a mineral that can cause potential environmental issues in coal mining, is commonly found in coal seams around intrusions. In this paper, pyrites from the Yuandian Coal Mine (Huaibei Coalfield, Anhui, Eastern China) were studied using SEM, Raman and LA-ICP-MS. The pyrite morphologic and geochemical data suggest that (1) four pyrite generations are present (framboidal sedimentary pyrites (Py I) in the original coal, coarse-grained magmatic pyrites (Py II) in the intruding diabase, fine-grained metamorphic pyrites (Py III) in the intrusive contact aureole, and spheroid/vein hydrothermal pyrites (Py IV) in the cokeite); and (2) concentrations of cobalt, nickel, arsenic, selenium, lead and copper in the metamorphic pyrites are much higher than the other pyrite generations. We propose that mafic magmatism is the main contributor of the toxic elements to the intrusion-related cokeite at Yuandian. Full article
(This article belongs to the Special Issue Toxic Mineral Matter in Coal and Coal Combustion Products)
Figures

Figure 1

Open AccessArticle Response Surface Methodology for Optimization of Copper Leaching from Refractory Flotation Tailings
Minerals 2018, 8(4), 165; https://doi.org/10.3390/min8040165
Received: 5 March 2018 / Revised: 27 March 2018 / Accepted: 16 April 2018 / Published: 18 April 2018
PDF Full-text (5885 KB) | HTML Full-text | XML Full-text
Abstract
Response surface methodology is used to optimize the leaching process for refractory flotation copper tailings. The proportion of the refractory combination oxide copper (chrysocolla) is 64.84%. At present, few studies have examined the leaching of chrysocolla. In this study, we examine the effects
[...] Read more.
Response surface methodology is used to optimize the leaching process for refractory flotation copper tailings. The proportion of the refractory combination oxide copper (chrysocolla) is 64.84%. At present, few studies have examined the leaching of chrysocolla. In this study, we examine the effects of several variables, including the amount of concentrated sulfuric acid, leaching temperature, and leaching time, on leaching efficiency. Using a response surface methodology, we develop a quadratic model relanbting all the above experimental variables with leaching efficiency. The resulting model is highly consistent with experimental data. According to the model, the factor with the greatest influence on leaching efficiency is the amount of concentrated sulfuric acid. According to the model, the optimal leaching conditions are 85 kg/t concentrated sulfuric acid, a leaching temperature of 68.51 °C, and a leaching time of 4.36 h. The actual measured leaching efficiency under these conditions is 85.86%, which is close to the value of 86.79% predicted by the model. We study the leaching processes using scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) surface scan analyses. Both methods allow us to explore the content of the main element and visually observe its distribution, allowing us to develop effective methods for treating low-grade oxide ores. Full article
(This article belongs to the Special Issue Sustainable Mineral Processing Technologies)
Figures

Figure 1

Open AccessArticle An Insight into Flotation Chemistry of Pyrite with Isomeric Xanthates: A Combined Experimental and Computational Study
Minerals 2018, 8(4), 166; https://doi.org/10.3390/min8040166
Received: 26 March 2018 / Revised: 12 April 2018 / Accepted: 16 April 2018 / Published: 19 April 2018
PDF Full-text (33351 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The flotation chemistry between pyrite and isomeric xanthates (butyl xanthate and isobutyl xanthate) was investigated by means of adsorption experiments, surface tension tests, and molecular dynamic simulations in this work. The flotation chemical results were confirmed and further interpreted by quantum chemical calculations.
[...] Read more.
The flotation chemistry between pyrite and isomeric xanthates (butyl xanthate and isobutyl xanthate) was investigated by means of adsorption experiments, surface tension tests, and molecular dynamic simulations in this work. The flotation chemical results were confirmed and further interpreted by quantum chemical calculations. The experiment results demonstrated that the isobutyl xanthate exhibited superior adsorption capacity and surface activity than those of butyl xanthate in flotation chemistry. In addition, molecular dynamic simulations were simultaneously performed in constant number, constant volume and temperature (NVT), and constant number, constant volume, and pressure (NPT) ensemble, indicating that the NPT ensemble was more suitable to the flotation system and the isobutyl xanthate was easier to be adsorbed on pyrite surface compared with butyl xanthate during an appropriate range of concentrations. Furthermore, the quantum chemical calculations elucidated that the isobutyl xanthate presented higher reactivity than that of the corresponding butyl xanthate based on the frontier molecular orbital theory of chemical reactivity, which was consistent with experimental and simulation results obtained. This work can provide theoretical guidance for an in-depth study of the flotation chemistry of pyrite with isomeric xanthates. Full article
(This article belongs to the Special Issue Flotation Chemistry)
Figures

Figure 1

Open AccessArticle Strength Development and Microstructure Evolution of Cemented Tailings Backfill Containing Different Binder Types and Contents
Minerals 2018, 8(4), 167; https://doi.org/10.3390/min8040167
Received: 20 March 2018 / Revised: 16 April 2018 / Accepted: 17 April 2018 / Published: 19 April 2018
PDF Full-text (36264 KB) | HTML Full-text | XML Full-text
Abstract
The microstructure evolution and strength development of cemented tailings backfill (CTB), mixed with plant tailings and cement, is critical to a more thorough and complete understanding of its functionality as a support structure in underground mining operations. Here, an experimental study is conducted
[...] Read more.
The microstructure evolution and strength development of cemented tailings backfill (CTB), mixed with plant tailings and cement, is critical to a more thorough and complete understanding of its functionality as a support structure in underground mining operations. Here, an experimental study is conducted to investigate the effect of the solid contents of tailings, binder proportion, and type of cement reagent on unconfined compressive strength (UCS) and microstructure evolution with respect to a 90-day curing time. The results indicate that the mechanical strength gain is proportionally associated with increased binder and solid content. Besides, the samples prepared with 70 wt % solid content and a 25 wt % binder/tailings ratio have a maximum UCS of 6.26 MPa at a curing time of 90 days. In addition, it is also concluded that the binder proportion promotes the strength acquisition of CTB samples. Specifically, the 90-day UCS of the CTB with solid content of 68 wt % and binder content of 25 wt % is approximately twice that of the CTB with a 12.5 wt % binder proportion. Slag cement (Binder B1) and slag cement with 5 wt % NaOH (Binder B2) are used as admixture to replace the cement reagent; the results show that Binder B2 has more advantages than Binder B1 and Portland cement, and is a suitable cementing material for the CTB technology in the Daye Iron Mine. The microstructure is dominated by the network of hydration products and distribution of the pore, and hydrated material is significantly influenced by the curing time. The tailings particles are enclosed by the hydration products, and randomly disperse within their matrix at curing time of 90 days. Finally, the UCSs of CTB samples are observed to significantly increase with the increase in the curing time. Full article
(This article belongs to the Special Issue Backfilling Materials for Underground Mining)
Figures

Figure 1

Open AccessArticle Effect of Chain Length Compatibility of Alcohols on Muscovite Flotation by Dodecyl Amine
Minerals 2018, 8(4), 168; https://doi.org/10.3390/min8040168
Received: 15 March 2018 / Revised: 11 April 2018 / Accepted: 15 April 2018 / Published: 19 April 2018
PDF Full-text (7965 KB) | HTML Full-text | XML Full-text
Abstract
A portion of dodecyl amine (DDA) in a muscovite flotation system was replaced with alcohols with different carbon-chain lengths. These alcohols included octanol (OCT); decanol (DEC); dodecanol (DOD); and tetradecanol (TER). The muscovite adsorption behavior of the mixed DDA and alcohol systems were
[...] Read more.
A portion of dodecyl amine (DDA) in a muscovite flotation system was replaced with alcohols with different carbon-chain lengths. These alcohols included octanol (OCT); decanol (DEC); dodecanol (DOD); and tetradecanol (TER). The muscovite adsorption behavior of the mixed DDA and alcohol systems were investigated through zeta potential; contact angle; and adsorption quantity tests. Single-mineral flotation tests showed that the muscovite-collecting power of the mixed DDA/alcohol (OCT, DEC, or DOD) system was stronger than that of the pure DDA system. The muscovite-collecting power of the collector systems decreased in the following order: DDA/DEC > DDA/OCT > DDA/DEC > DDA > DDA/TER. Zeta potential and contact angle analysis indicated that when combined with DDA; alcohols physically adsorbed on the surfaces of muscovite. This behavior improved the hydrophobicity of muscovite. Furthermore, adsorption analysis revealed that synergy between DDA and alcohol enhanced the adsorption of alcohol on muscovite. DDA has a dominant role in synergistic adsorption; whereas alcohol has a supporting role. Among all tested alcohols; DDA and DOD exhibit the highest synergetic adsorption effect because of their similar carbon-chain lengths. This similarity promotes the formation of a compact adsorption layer on the muscovite surface. Full article
Figures

Figure 1

Open AccessArticle Carbonation-Induced Mineralogical Changes in Coal Mining Waste Blended Cement Pastes and Their Influence on Mechanical and Microporosity Properties
Minerals 2018, 8(4), 169; https://doi.org/10.3390/min8040169
Received: 12 February 2018 / Revised: 16 April 2018 / Accepted: 17 April 2018 / Published: 20 April 2018
PDF Full-text (5995 KB) | HTML Full-text | XML Full-text
Abstract
The worldwide pursuit of new eco-efficient pozzolans is ongoing. Kaolinite-based waste is an eco-friendly source of recycled metakaolinite, a highly pozzolanic product. In this study, a blended cement paste containing 20% activated coal waste (ACW) was exposed to a 100% CO2 atmosphere
[...] Read more.
The worldwide pursuit of new eco-efficient pozzolans is ongoing. Kaolinite-based waste is an eco-friendly source of recycled metakaolinite, a highly pozzolanic product. In this study, a blended cement paste containing 20% activated coal waste (ACW) was exposed to a 100% CO2 atmosphere at 65% RH for 7 days. The variations in its phase composition and strength were studied and compared to an OPC control. Both pastes were cured for 28 days prior to the carbonation test. Reaction kinetics were assessed using XRD, SEM/EDX, TG/DTG, FT-IR, Micro-Raman spectroscopy, pore solution pH and the cumulative carbonated fraction. The blended cement carbonated 68% faster than the control. While portlandite carbonation was the main reaction in both cements, decalcification was also observed (more intensely in the 20% ACW paste) in other hydraulic calcium phases (C-S-H gel, monocarboaluminate (C4AcH12), ettringite and tetracalcium aluminate (C4AH13). The end product of this reaction was calcium carbonate, mainly in the form of calcite, although traces of aragonite and amorphous carbonate were also detected. Compressive strength values rose with accelerated carbonation time and pore size reduction in both cement pastes. Full article
Figures

Figure 1

Open AccessArticle Breakage Function for HPGR: Mineral and Mechanical Characterization of Tantalum and Tungsten Ores
Minerals 2018, 8(4), 170; https://doi.org/10.3390/min8040170
Received: 1 March 2018 / Revised: 13 April 2018 / Accepted: 17 April 2018 / Published: 20 April 2018
PDF Full-text (4801 KB) | HTML Full-text | XML Full-text
Abstract
The modelling of high pressure grinding rolls is described by the population balance model, a mass balance which includes several functions that are related to the mineral characteristics, material kinetics and operative conditions of the device. The breakage distribution function is one of
[...] Read more.
The modelling of high pressure grinding rolls is described by the population balance model, a mass balance which includes several functions that are related to the mineral characteristics, material kinetics and operative conditions of the device. The breakage distribution function is one of these functions and refers to the way in which the daughter particles are generated by the process of comminution. The piston-die press is presented as a methodology to determine the breakage distribution function of two different materials, from the mechanical response point of view: altered granite and a cal-silicate material. The aim is to determine the relation between the operative conditions and the mineral characteristics in order to explain and predict the breakage function parameters. The materials were characterised using XRD and single compression strength tests. The altered granite is a brittle material, which generates more fines under single compression conditions compared to bed compression conditions, mainly due to the mineral composition and the response of the material to the breakage action. The cal-silicate material shows a normal trend in its breakage behaviour. As is expected, the mineralogical characterisation is a useful tool to predict the values of the parameters of the breakage distribution function. Full article
(This article belongs to the Special Issue Process Mineralogy of Critical Metals)
Figures

Graphical abstract

Open AccessArticle Archaean Gold Mineralization in an Extensional Setting: The Structural History of the Kukuluma and Matandani Deposits, Geita Greenstone Belt, Tanzania
Minerals 2018, 8(4), 171; https://doi.org/10.3390/min8040171
Received: 22 March 2018 / Accepted: 22 March 2018 / Published: 21 April 2018
PDF Full-text (7717 KB) | HTML Full-text | XML Full-text
Abstract
Three major gold deposits, Matandani, Kukuluma, and Area 3, host several million ouncez (Moz) of gold, along a ~5 km long, WNW trend in the E part of the Geita Greenstone Belt, NW Tanzania. The deposits are hosted in Archaean volcanoclastic sediment and
[...] Read more.
Three major gold deposits, Matandani, Kukuluma, and Area 3, host several million ouncez (Moz) of gold, along a ~5 km long, WNW trend in the E part of the Geita Greenstone Belt, NW Tanzania. The deposits are hosted in Archaean volcanoclastic sediment and intrusive diorite. The geological evolution of the deposits involved three separate stages: (1) an early stage of syn-sedimentary extensional deformation (D1) around 2715 Ma; (2) a second stage involving overprinting ductile folding (D2–4) and shearing (D5–6) events during N-S compression between 2700 and 2665 Ma, coeval with the emplacement of the Kukuluma Intrusive Complex; and (3) a final stage of extensional deformation (D7) accommodated by minor, broadly east-trending normal faults, preceded by the intrusion of felsic porphyritic dykes at ~2650 Ma. The geometry of the ore bodies at Kukuluma and Matandani is controlled by the distribution of magnetite-rich meta-ironstone, near the margins of monzonite-diorite bodies of the Kukuluma Intrusive Complex. The lithological contacts acted as redox boundaries, where high-grade mineralization was enhanced in damage zones with higher permeability, including syn-D3 hydrothermal breccia, D2–D3 fold hinges, and D6 shears. The actual mineralizing event was syn-D7, and occurred in an extensional setting that facilitated the infiltration of mineralizing fluids. Thus, whilst gold mineralization is late-tectonic, ore zone geometries are linked to older structures and lithological boundaries that formed before gold was introduced. The deformation-intrusive history of the Kukuluma and Matandani deposits is near identical to the geological history of the world-class Nyankanga and Geita Hill deposits in the central part of the Geita Greenstone Belt. This similarity suggests that the geological history of much of the greenstone belt is similar. All major gold deposits in the Geita Greenstone Belt lack close proximity to crustal-scale shear zones; they are associated with intrusive complexes and volcanics that formed in an oceanic plateau rather than subduction setting, and formed late-tectonically during an extensional phase. They are not characteristic of typical orogenic gold deposits. Full article
Figures

Figure 1

Open AccessArticle Effect of Sodium Sulfite on Floatability of Chalcopyrite and Molybdenite
Minerals 2018, 8(4), 172; https://doi.org/10.3390/min8040172
Received: 14 March 2018 / Revised: 15 April 2018 / Accepted: 16 April 2018 / Published: 22 April 2018
PDF Full-text (2554 KB) | HTML Full-text | XML Full-text
Abstract
Sodium hydrogen sulfide (NaHS) is commonly used as a copper depressant in the selective flotation of copper and molybdenum ores. However, the process is facing health and safety issues because NaHS readily yields toxic hydrogen sulfide gas (H2S) under acidic conditions.
[...] Read more.
Sodium hydrogen sulfide (NaHS) is commonly used as a copper depressant in the selective flotation of copper and molybdenum ores. However, the process is facing health and safety issues because NaHS readily yields toxic hydrogen sulfide gas (H2S) under acidic conditions. In this study, Na2SO3 was proposed as an alternative copper depressant. The effect of Na2SO3 on the surface wettability and floatability of chalcopyrite and molybdenite—typical copper and molybdenum minerals, respectively—was intensively studied using contact angle measurements and flotation tests. Contact angle readings show that the chalcopyrite surface became hydrophilic after the Na2SO3 treatment. Meanwhile, the molybdenite surface was relatively more hydrophobic compared with that of chalcopyrite after the treatment. Flotation tests using pure minerals of chalcopyrite and molybdenite demonstrate that the floatability of chalcopyrite decreased with increasing concentration of Na2SO3. On the other hand, the floatability of molybdenite gradually increased under similar conditions, suggesting that Na2SO3 might have the potential to be used for selective flotation of chalcopyrite and molybdenite. A possible mechanism is proposed in this study to explain the phenomenon using X-ray photoelectron spectroscopy analysis. Full article
(This article belongs to the Special Issue Flotation Chemistry)
Figures

Figure 1

Open AccessArticle Insights into the Surface Transformation and Electrochemical Dissolution Process of Bornite in Bioleaching
Minerals 2018, 8(4), 173; https://doi.org/10.3390/min8040173
Received: 23 March 2018 / Revised: 16 April 2018 / Accepted: 20 April 2018 / Published: 23 April 2018
PDF Full-text (8897 KB) | HTML Full-text | XML Full-text
Abstract
In this work, density functional theory (DFT) calculations, X-ray photoelectron spectroscopy (XPS) and electrochemistry analysis were combined to analyze the electrochemical dissolution process of bornite during bioleaching. DFT calculations showed that bornite was a conductor with metallic conductivity. The formula of bornite may
[...] Read more.
In this work, density functional theory (DFT) calculations, X-ray photoelectron spectroscopy (XPS) and electrochemistry analysis were combined to analyze the electrochemical dissolution process of bornite during bioleaching. DFT calculations showed that bornite was a conductor with metallic conductivity. The formula of bornite may be (Cu+)5Fe3+(S2−)4 and the surface reconstruction of (111)-S surface was discussed. Electrochemistry and XPS analysis showed that bornite tended to be directly oxidized with high conductivity when the potential was higher than 0.3 V vs. Ag/AgCl. Elemental sulfur (S0), FeOOH and CuS were the main intermediate species on the bornite surface during the oxidation process. The production of S0 and FeOOH on bornite surface can be significantly accelerated with increased redox potential, but no insoluble sulfate (SO42−) formed on bornite surface in 0.3–0.65 V vs. Ag/AgCl. The oxidative dissolution of bornite was significantly accelerated with increasing redox potential, which was one important reason why mixed culture was more effective than single strains of A. caldus and L. ferriphilum in bornite bioleaching. The insoluble SO42− was formed mainly through the chemical reactions in solution and then covered the bornite surface in bioleaching. Based on the obtained results, a model for interpreting the dissolution process of bornite in bioleaching was proposed. Full article
Figures

Graphical abstract

Review

Jump to: Research

Open AccessReview Integrated Mineral Carbonation of Ultramafic Mine Deposits—A Review
Minerals 2018, 8(4), 147; https://doi.org/10.3390/min8040147
Received: 15 March 2018 / Revised: 29 March 2018 / Accepted: 4 April 2018 / Published: 9 April 2018
PDF Full-text (27799 KB) | HTML Full-text | XML Full-text
Abstract
Recently, integrated mineral carbonation for CO2 sequestration has received significant attention due to the high potential for commercialization towards mitigating climate change. This review compiles the work conducted by various researchers over the last few years on integrated mineral carbonation processes in
[...] Read more.
Recently, integrated mineral carbonation for CO2 sequestration has received significant attention due to the high potential for commercialization towards mitigating climate change. This review compiles the work conducted by various researchers over the last few years on integrated mineral carbonation processes in the mining industry, which use ultramafic mine wastes as feedstock for mineral carbonation. Here, we introduce the basic concepts of mineral carbonation including a brief description of the process routes and pre-treatment techniques. We discuss the scope of integrated mineral carbonation process application, and critically review the integrated mineral carbonation process in the mining industry including modified passive carbonation techniques in tailing storage facilities, and ex-situ carbonation routes using fresh tailings. The focus of the discussions is the role of reaction condition on the carbonation efficiency of mine waste with various mineralogical compositions, and the benefits and drawbacks of each integrated mineral carbonation process. All discussions lead to suggestions for the technological improvement of integrated mineral carbonation. Finally, we review the techno-economic assessments on existing integrated mineral carbonation technologies. Research to date indicates that value-added by-products will play an important role in the commercialization of an integrated mineral carbonation process. Full article
Figures

Figure 1

Open AccessReview Tracing Mineral Reactions Using Confocal Raman Spectroscopy
Minerals 2018, 8(4), 158; https://doi.org/10.3390/min8040158
Received: 7 March 2018 / Revised: 6 April 2018 / Accepted: 9 April 2018 / Published: 13 April 2018
PDF Full-text (19873 KB) | HTML Full-text | XML Full-text
Abstract
Raman spectroscopy is a powerful tool used to identify mineral phases, study aqueous solutions and gas inclusions as well as providing crystallinity, crystallographic orientation and chemistry of mineral phases. When united with isotopic tracers, the information gained from Raman spectroscopy can be expanded
[...] Read more.
Raman spectroscopy is a powerful tool used to identify mineral phases, study aqueous solutions and gas inclusions as well as providing crystallinity, crystallographic orientation and chemistry of mineral phases. When united with isotopic tracers, the information gained from Raman spectroscopy can be expanded and includes kinetic information on isotope substitution and replacement mechanisms. This review will examine the research to date that utilizes Raman spectroscopy and isotopic tracers. Beginning with the Raman effect and its use in mineralogy, the review will show how the kinetics of isotope exchange between an oxyanion and isotopically enriched water can be determined in situ. Moreover, we show how isotope tracers can help to unravel the mechanisms of mineral replacement that occur at the nanoscale and how they lead to the formation of pseudomorphs. Finally, the use of isotopic tracers as an in situ clock for mineral replacement processes will be discussed as well as where this area of research can potentially be applied in the future. Full article
(This article belongs to the Special Issue Mineral Surface Reactions at the Nanoscale)
Figures

Figure 1