Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Nutrients, Volume 3, Issue 5 (May 2011), Pages 515-636

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-6
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Breakfast and Snacks: Associations with Cognitive Failures, Minor Injuries, Accidents and Stress
Nutrients 2011, 3(5), 515-528; doi:10.3390/nu3050515
Received: 20 March 2011 / Revised: 25 April 2011 / Accepted: 3 May 2011 / Published: 4 May 2011
Cited by 8 | PDF Full-text (236 KB) | HTML Full-text | XML Full-text
Abstract
One strategy for examining effects of nutrients on cognitive function is to initially investigate foods that contain many different nutrients. If effects are demonstrated with these foods then further studies can address the role of specific nutrients. Breakfast foods (e.g., cereals, dairy products
[...] Read more.
One strategy for examining effects of nutrients on cognitive function is to initially investigate foods that contain many different nutrients. If effects are demonstrated with these foods then further studies can address the role of specific nutrients. Breakfast foods (e.g., cereals, dairy products and fruit) provide many important nutrients and consumption of breakfast has been shown to be associated with beneficial effects on cognitive function. Isolating effects of specific constituents of breakfast has proved more difficult and it is still unclear what impact breakfast has on real-life performance. The present study provided initial information on associations between breakfast consumption and cognitive failures and accidents. A second aim was to examine associations between consumption of snacks which are often perceived as being unhealthy (chocolate, crisps and biscuits). A sample of over 800 nurses took part in the study. The results showed that frequency of breakfast consumption (varied breakfasts: 62% cereal) was associated with lower stress, fewer cognitive failures, injuries and accidents at work. In contrast, snacking on crisps, chocolate and biscuits was associated with higher stress, more cognitive failures and more injuries outside of work. Further research requires intervention studies to provide a clearer profile of causality and underlying mechanisms. Full article
(This article belongs to the Special Issue Cognitive Benefits of Nutrients)

Review

Jump to: Research

Open AccessReview Docosahexaenoic Acid (DHA): An Ancient Nutrient for the Modern Human Brain
Nutrients 2011, 3(5), 529-554; doi:10.3390/nu3050529
Received: 20 March 2011 / Revised: 27 April 2011 / Accepted: 3 May 2011 / Published: 10 May 2011
Cited by 57 | PDF Full-text (334 KB) | HTML Full-text | XML Full-text
Abstract
Modern humans have evolved with a staple source of preformed docosahexaenoic acid (DHA) in the diet. An important turning point in human evolution was the discovery of high-quality, easily digested nutrients from coastal seafood and inland freshwater sources. Multi-generational exploitation of seafood by
[...] Read more.
Modern humans have evolved with a staple source of preformed docosahexaenoic acid (DHA) in the diet. An important turning point in human evolution was the discovery of high-quality, easily digested nutrients from coastal seafood and inland freshwater sources. Multi-generational exploitation of seafood by shore-based dwellers coincided with the rapid expansion of grey matter in the cerebral cortex, which characterizes the modern human brain. The DHA molecule has unique structural properties that appear to provide optimal conditions for a wide range of cell membrane functions. This has particular implications for grey matter, which is membrane-rich tissue. An important metabolic role for DHA has recently been identified as the precursor for resolvins and protectins. The rudimentary source of DHA is marine algae; therefore it is found concentrated in fish and marine oils. Unlike the photosynthetic cells in algae and higher plants, mammalian cells lack the specific enzymes required for the de novo synthesis of alpha-linolenic acid (ALA), the precursor for all omega-3 fatty acid syntheses. Endogenous synthesis of DHA from ALA in humans is much lower and more limited than previously assumed. The excessive consumption of omega-6 fatty acids in the modern Western diet further displaces DHA from membrane phospholipids. An emerging body of research is exploring a unique role for DHA in neurodevelopment and the prevention of neuropsychiatric and neurodegenerative disorders. DHA is increasingly being added back into the food supply as fish oil or algal oil supplementation. Full article
(This article belongs to the Special Issue Cognitive Benefits of Nutrients)
Open AccessReview Dehydration Influences Mood and Cognition: A Plausible Hypothesis?
Nutrients 2011, 3(5), 555-573; doi:10.3390/nu3050555
Received: 21 March 2011 / Revised: 26 April 2011 / Accepted: 3 May 2011 / Published: 10 May 2011
Cited by 30 | PDF Full-text (257 KB) | HTML Full-text | XML Full-text
Abstract
The hypothesis was considered that a low fluid intake disrupts cognition and mood. Most research has been carried out on young fit adults, who typically have exercised, often in heat. The results of these studies are inconsistent, preventing any conclusion. Even if the
[...] Read more.
The hypothesis was considered that a low fluid intake disrupts cognition and mood. Most research has been carried out on young fit adults, who typically have exercised, often in heat. The results of these studies are inconsistent, preventing any conclusion. Even if the findings had been consistent, confounding variables such as fatigue and increased temperature make it unwise to extrapolate these findings. Thus in young adults there is little evidence that under normal living conditions dehydration disrupts cognition, although this may simply reflect a lack of relevant evidence. There remains the possibility that particular populations are at high risk of dehydration. It is known that renal function declines in many older individuals and thirst mechanisms become less effective. Although there are a few reports that more dehydrated older adults perform cognitive tasks less well, the body of information is limited and there have been little attempt to improve functioning by increasing hydration status. Although children are another potentially vulnerable group that have also been subject to little study, they are the group that has produced the only consistent findings in this area. Four intervention studies have found improved performance in children aged 7 to 9 years. In these studies children, eating and drinking as normal, have been tested on occasions when they have and not have consumed a drink. After a drink both memory and attention have been found to be improved. Full article
(This article belongs to the Special Issue Cognitive Benefits of Nutrients)
Open AccessReview Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract
Nutrients 2011, 3(5), 574-603; doi:10.3390/nu3050574
Received: 30 March 2011 / Revised: 29 April 2011 / Accepted: 9 May 2011 / Published: 11 May 2011
Cited by 48 | PDF Full-text (335 KB) | HTML Full-text | XML Full-text
Abstract
Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune
[...] Read more.
Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI) tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake. Full article
(This article belongs to the Special Issue Dietary Protein and Metabolism)
Open AccessReview Use of Probiotics as Prophylaxis for Postoperative Infections
Nutrients 2011, 3(5), 604-612; doi:10.3390/nu3050604
Received: 29 March 2011 / Revised: 26 April 2011 / Accepted: 28 April 2011 / Published: 12 May 2011
Cited by 27 | PDF Full-text (155 KB) | HTML Full-text | XML Full-text
Abstract
Postoperative bacterial infections are common despite prophylactic administration of antibiotics. The wide-spread use of antibiotics in patients has contributed to the emergence of multiresistant bacteria. A restricted use of antibiotics must be followed in most clinical situations. In surgical patients there are several
[...] Read more.
Postoperative bacterial infections are common despite prophylactic administration of antibiotics. The wide-spread use of antibiotics in patients has contributed to the emergence of multiresistant bacteria. A restricted use of antibiotics must be followed in most clinical situations. In surgical patients there are several reasons for an altered microbial flora in the gut in combination with an altered barrier function leading to an enhanced inflammatory response to surgery. Several experimental and clinical studies have shown that probiotics (mainly lactobacilli) may reduce the number of potentially pathogenia bacteria (PPM) and restore a deranged barrier function. It is therefore of interest to test if these abilities of probiotics can be utilized in preoperative prophylaxis. These factors may be corrected by perioperative administration of probiotics in addition to antibiotics. Fourteen randomized clinical trials have been presented in which the effect of such regimens has been tested. It seems that in patients undergoing liver transplantation or elective surgery in the upper gastrointestinal tract prophylactic administration of different probiotic strains in combination with different fibers results in a three-fold reduction in postoperative infections. In parallel there seems to be a reduction in postoperative inflammation, although that has not been studied in a systematic way. The use of similar concepts in colorectal surgery has not been successful in reducing postoperative infections. Reasons for this difference are not obvious. It may be that higher doses of probiotics with longer duration are needed to influence microbiota in the lower gastrointestinal tract or that immune function in colorectal patients may not be as important as in transplantation or surgery in the upper gastrointestinal tract. The favorable results for the use of prophylactic probiotics in some settings warrant further controlled studies to elucidate potential mechanisms, impact on gut microbiota and influence on clinical management. The use of probiotics must be better delineated in relation to type of bacteria, dose and length of administration. Full article
(This article belongs to the Special Issue Probiotics and Nutrition)
Open AccessReview Lactobacillus Adhesion to Mucus
Nutrients 2011, 3(5), 613-636; doi:10.3390/nu3050613
Received: 10 April 2011 / Revised: 5 May 2011 / Accepted: 11 May 2011 / Published: 20 May 2011
Cited by 62 | PDF Full-text (536 KB) | HTML Full-text | XML Full-text
Abstract
Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to
[...] Read more.
Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host. Full article
(This article belongs to the Special Issue Nutriceuticals)
Figures

Journal Contact

MDPI AG
Nutrients Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
nutrients@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Nutrients
Back to Top