Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Remote Sens., Volume 10, Issue 7 (July 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-171
Export citation of selected articles as:
Open AccessArticle Large-Scale Accurate Reconstruction of Buildings Employing Point Clouds Generated from UAV Imagery
Remote Sens. 2018, 10(7), 1148; https://doi.org/10.3390/rs10071148 (registering DOI)
Received: 27 May 2018 / Revised: 9 July 2018 / Accepted: 16 July 2018 / Published: 20 July 2018
PDF Full-text (8991 KB) | HTML Full-text | XML Full-text
Abstract
High-density point clouds are valuable and detailed sources of data for different processes related to photogrammetry. We explore the knowledge-based generation of accurate large-scale three-dimensional (3D) models of buildings employing point clouds derived from UAV-based photogrammetry. A new two-level segmentation approach based on
[...] Read more.
High-density point clouds are valuable and detailed sources of data for different processes related to photogrammetry. We explore the knowledge-based generation of accurate large-scale three-dimensional (3D) models of buildings employing point clouds derived from UAV-based photogrammetry. A new two-level segmentation approach based on efficient RANdom SAmple Consensus (RANSAC) shape detection is developed to segment potential facades and roofs of the buildings and extract their footprints. In the first level, the cylinder primitive is implemented to trim point clouds and split buildings, and the second level of the segmentation produces planar segments. The efficient RANSAC algorithm is enhanced in sizing up the segments via point-based analyses for both levels of segmentation. Then, planar modelling is carried out employing contextual knowledge through a new constrained least squares method. New evaluation criteria are proposed based on conceptual knowledge. They can examine the abilities of the approach in reconstruction of footprints, 3D models, and planar segments in addition to detection of over/under segmentation. Evaluation of the 3D models proves that the geometrical accuracy of LoD3 is achieved, since the average horizontal and vertical accuracy of the reconstructed vertices of roofs and footprints are better than (0.24, 0.23) m, (0.19, 0.17) m for the first dataset, and (0.35, 0.37) m, (0.28, 0.24) m for the second dataset. Full article
Figures

Figure 1

Open AccessArticle Radiation Component Calculation and Energy Budget Analysis for the Korean Peninsula Region
Remote Sens. 2018, 10(7), 1147; https://doi.org/10.3390/rs10071147 (registering DOI)
Received: 31 May 2018 / Revised: 10 July 2018 / Accepted: 19 July 2018 / Published: 20 July 2018
PDF Full-text (11085 KB) | HTML Full-text | XML Full-text
Abstract
In this study, a radiation component calculation algorithm was developed using channel data from the Himawari-8 Advanced Himawari Imager (AHI) and meteorological data from the Unified Model (UM) Local Data Assimilation and Prediction System (LDAPS). In addition, the energy budget of the Korean
[...] Read more.
In this study, a radiation component calculation algorithm was developed using channel data from the Himawari-8 Advanced Himawari Imager (AHI) and meteorological data from the Unified Model (UM) Local Data Assimilation and Prediction System (LDAPS). In addition, the energy budget of the Korean Peninsula region in 2016 was calculated and its regional differences were analyzed. Radiation components derived using the algorithm were calibrated using the broadband radiation component data from the Clouds and the Earth’s Radiant Energy System (CERES) to improve their accuracy. The calculated radiation components and the CERES data showed an annual mean percent bias of less than 3.5% and a high correlation coefficient of over 0.98. The energy budget of the Korean Peninsula region was −2.4 Wm−2 at the top of the atmosphere (RT), −14.5 Wm−2 at the surface (RS), and 12.1 Wm−2 in the atmosphere (RA), with regional energy budget differences. The Seoul region had a high surface temperature (289.5 K) and a RS of −33.4 Wm−2 (surface emission), whereas the Sokcho region had a low surface temperature (284.7 K) and a RS of 5.0 Wm−2 (surface absorption), for a difference of 38.5 Wm−2. In short, regions with relatively high surface temperatures tended to show energy emission, and regions with relatively low surface temperatures tended to show energy absorption. Such regional energy imbalances can cause weather and climate changes and bring about meteorological disasters, and thus research on detecting energy budget changes must be continued. Full article
(This article belongs to the Special Issue Earth Radiation Budget)
Figures

Graphical abstract

Open AccessFeature PaperArticle Subsidence Evolution of the Firenze–Prato–Pistoia Plain (Central Italy) Combining PSI and GNSS Data
Remote Sens. 2018, 10(7), 1146; https://doi.org/10.3390/rs10071146 (registering DOI)
Received: 1 June 2018 / Revised: 10 July 2018 / Accepted: 18 July 2018 / Published: 20 July 2018
PDF Full-text (8371 KB) | HTML Full-text | XML Full-text
Abstract
Subsidence phenomena, as well as landslides and floods, are one of the main geohazards affecting the Tuscany region (central Italy). The monitoring of related ground deformations plays a key role in their management to avoid problems for buildings and infrastructure. In this scenario,
[...] Read more.
Subsidence phenomena, as well as landslides and floods, are one of the main geohazards affecting the Tuscany region (central Italy). The monitoring of related ground deformations plays a key role in their management to avoid problems for buildings and infrastructure. In this scenario, Earth observation offers a better solution in terms of costs and benefits than traditional techniques (e.g., GNSS (Global Navigation Satellite System) or levelling networks), especially for wide area applications. In this work, the subsidence-related ground motions in the Firenze–Prato–Pistoia plain were back-investigated to track the evolution of displacement from 2003 to 2017 by means of multi-interferometric analysis of ENVISAT and Sentinel-1 imagery combined with GNSS data. The resulting vertical deformation velocities are aligned to the European Terrestrial Reference System 89 (ETRS89) datum and can be considered real velocity of displacement. The vertical ground deformation maps derived by ENVISAT and Sentinel-1 data, corrected with the GNSS, show how the area affected by subsidence for the period 2003–2010 and the period 2014–2017 evolved. The differences between the two datasets in terms of the extension and velocity values were analysed and then associated with the geological setting of the basin and external factors, e.g., new greenhouses and nurseries. This analysis allowed for reconstructing the evolution of the subsidence for the area of interest showing an increment of ground deformation in the historic centre of Pistoia Town, a decrement of subsidence in the nursery area between Pistoia and Prato cities, and changes in the industrial sector close to Prato. Full article
(This article belongs to the Special Issue Radar Interferometry for Geohazards)
Figures

Graphical abstract

Open AccessArticle Supervised Classification of Built-Up Areas in Sub-Saharan African Cities Using Landsat Imagery and OpenStreetMap
Remote Sens. 2018, 10(7), 1145; https://doi.org/10.3390/rs10071145 (registering DOI)
Received: 19 June 2018 / Revised: 12 July 2018 / Accepted: 16 July 2018 / Published: 20 July 2018
PDF Full-text (14504 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The Landsat archives have been made freely available in 2008, allowing the production of high resolution built-up maps at the regional or global scale. In this context, most of the classification algorithms rely on supervised learning to tackle the heterogeneity of the urban
[...] Read more.
The Landsat archives have been made freely available in 2008, allowing the production of high resolution built-up maps at the regional or global scale. In this context, most of the classification algorithms rely on supervised learning to tackle the heterogeneity of the urban environments. However, at a large scale, the process of collecting training samples becomes a huge project in itself. This leads to a growing interest from the remote sensing community toward Volunteered Geographic Information (VGI) projects such as OpenStreetMap (OSM). Despite the spatial heterogeneity of its contribution patterns, OSM provides an increasing amount of information on the earth’s surface. More interestingly, the community has moved beyond street mapping to collect a wider range of spatial data such as building footprints, land use, or points of interest. In this paper, we propose a classification method that makes use of OSM to automatically collect training samples for supervised learning of built-up areas. To take into account a wide range of potential issues, the approach is assessed in ten Sub-Saharan African urban areas from various demographic profiles and climates. The obtained results are compared with: (1) existing high resolution global urban maps such as the Global Human Settlement Layer (GHSL) or the Human Built-up and Settlements Extent (HBASE); and (2) a supervised classification based on manually digitized training samples. The results suggest that automated supervised classifications based on OSM can provide performances similar to manual approaches, provided that OSM training samples are sufficiently available and correctly pre-processed. Moreover, the proposed method could reach better results in the near future, given the increasing amount and variety of information in the OSM database. Full article
(This article belongs to the Special Issue Citizen Science and Earth Observation II)
Figures

Graphical abstract

Open AccessArticle Multitemporal Classification of River Floodplain Vegetation Using Time Series of UAV Images
Remote Sens. 2018, 10(7), 1144; https://doi.org/10.3390/rs10071144
Received: 10 July 2018 / Accepted: 17 July 2018 / Published: 19 July 2018
PDF Full-text (9363 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The functions of river floodplains often conflict spatially, for example, water conveyance during peak discharge and diverse riparian ecology. Such functions are often associated with floodplain vegetation. Frequent monitoring of floodplain land cover is necessary to capture the dynamics of this vegetation. However,
[...] Read more.
The functions of river floodplains often conflict spatially, for example, water conveyance during peak discharge and diverse riparian ecology. Such functions are often associated with floodplain vegetation. Frequent monitoring of floodplain land cover is necessary to capture the dynamics of this vegetation. However, low classification accuracies are found with existing methods, especially for relatively similar vegetation types, such as grassland and herbaceous vegetation. Unmanned aerial vehicle (UAV) imagery has great potential to improve the classification of these vegetation types owing to its high spatial resolution and flexibility in image acquisition timing. This study aimed to evaluate the increase in classification accuracy obtained using multitemporal UAV images versus single time step data on floodplain land cover classification and to assess the effect of varying the number and timing of imagery acquisition moments. We obtained a dataset of multitemporal UAV imagery and field reference observations and applied object-based Random Forest classification (RF) to data of different time step combinations. High overall accuracies (OA) exceeding 90% were found for the RF of floodplain land cover, with six vegetation classes and four non-vegetation classes. Using two or more time steps compared with a single time step increased the OA from 96.9% to 99.3%. The user’s accuracies of the classes with large similarity, such as natural grassland and herbaceous vegetation, also exceeded 90%. The combination of imagery from June and September resulted in the highest OA (98%) for two time steps. Our method is a practical and highly accurate solution for monitoring areas of a few square kilometres. For large-scale monitoring of floodplains, the same method can be used, but with data from airborne platforms covering larger extents. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Figures

Graphical abstract

Open AccessArticle Variations in Remotely-Sensed Phytoplankton Size Structure of a Cyclonic Eddy in the Southwest Indian Ocean
Remote Sens. 2018, 10(7), 1143; https://doi.org/10.3390/rs10071143
Received: 1 May 2018 / Revised: 1 June 2018 / Accepted: 2 June 2018 / Published: 19 July 2018
PDF Full-text (7036 KB) | HTML Full-text | XML Full-text
Abstract
Phytoplankton size classes were derived from weekly-averaged MODIS Aqua chlorophyll a data over the southwest Indian Ocean in order to assess changes in surface phytoplankton community structure within a cyclonic eddy as it propagated across the Mozambique Basin in 2013. Satellite altimetry was
[...] Read more.
Phytoplankton size classes were derived from weekly-averaged MODIS Aqua chlorophyll a data over the southwest Indian Ocean in order to assess changes in surface phytoplankton community structure within a cyclonic eddy as it propagated across the Mozambique Basin in 2013. Satellite altimetry was used to identify and track the southwesterly movement of the eddy from its origin off Madagascar in mid-June until mid-October, when it eventually merged with the Agulhas Current along the east coast of South Africa. Nano- and picophytoplankton comprised most of the community in the early phase of the eddy development in June, but nanophytoplankton then dominated in austral winter (July and August). Microphytoplankton was entrained into the eddy by horizontal advection from the southern Madagascar shelf, increasing the proportion of microphytoplankton to 23% when the chlorophyll a levels reached a peak of 0.36 mg·m−3 in the third week of July. Chlorophyll a levels declined to <0.2 mg·m−3 in austral spring (September and October) as the eddy propagated further to the southwest. Picophytoplankton dominated the community during the spring period, accounting for >50% of the population. As far as is known, this is the first study to investigate temporal changes in chlorophyll a and community structure in a cyclonic eddy propagating across an ocean basin in the southwest Indian Ocean. Full article
(This article belongs to the Special Issue Remote Sensing of Ocean Colour)
Figures

Figure 1

Open AccessArticle Improving Spatial-Temporal Data Fusion by Choosing Optimal Input Image Pairs
Remote Sens. 2018, 10(7), 1142; https://doi.org/10.3390/rs10071142
Received: 27 May 2018 / Revised: 16 July 2018 / Accepted: 18 July 2018 / Published: 19 July 2018
PDF Full-text (5009 KB) | HTML Full-text | XML Full-text
Abstract
Spatial and temporal data fusion approaches have been developed to fuse reflectance imagery from Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS), which have complementary spatial and temporal sampling characteristics. The approach relies on using Landsat and MODIS image pairs that are acquired
[...] Read more.
Spatial and temporal data fusion approaches have been developed to fuse reflectance imagery from Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS), which have complementary spatial and temporal sampling characteristics. The approach relies on using Landsat and MODIS image pairs that are acquired on the same day to estimate Landsat-scale reflectance on other MODIS dates. Previous studies have revealed that the accuracy of data fusion results partially depends on the input image pair used. The selection of the optimal image pair to achieve better prediction of surface reflectance has not been fully evaluated. This paper assesses the impacts of Landsat-MODIS image pair selection on the accuracy of the predicted land surface reflectance using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) over different landscapes. MODIS images from the Aqua and Terra platforms were paired with images from the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) to make different pair image combinations. The accuracy of the predicted surface reflectance at 30 m resolution was evaluated using the observed Landsat data in terms of mean absolute difference, root mean square error and correlation coefficient. Results show that the MODIS pair images with smaller view zenith angles produce better predictions. As expected, the image pair closer to the prediction date during a short prediction period produce better prediction results. For prediction dates distant from the pair date, the predictability depends on the temporal and spatial variability of land cover type and phenology. The prediction accuracy for forests is higher than for crops in our study areas. The Normalized Difference Vegetation Index (NDVI) for crops is overestimated during the non-growing season when using an input image pair from the growing season, while NDVI is slightly underestimated during the growing season when using an image pair from the non-growing season. Two automatic pair selection strategies are evaluated. Results show that the strategy of selecting the MODIS pair date image that most highly correlates with the MODIS image on the prediction date produces more accurate predictions than the nearest date strategy. This study demonstrates that data fusion results can be improved if appropriate image pairs are used. Full article
Figures

Graphical abstract

Open AccessArticle The Benefit of the Geospatial-Related Waveforms Analysis to Extract Weak Laser Pulses
Remote Sens. 2018, 10(7), 1141; https://doi.org/10.3390/rs10071141
Received: 18 May 2018 / Revised: 15 July 2018 / Accepted: 17 July 2018 / Published: 19 July 2018
PDF Full-text (4794 KB) | HTML Full-text | XML Full-text
Abstract
Waveform lidar provides both geometric and waveform properties from the entire returned signals. The waveform analysis is an important process to extract the attributes of the reflecting surface from the waveform. The proposed method analyzes the geospatial relationship between the return signals by
[...] Read more.
Waveform lidar provides both geometric and waveform properties from the entire returned signals. The waveform analysis is an important process to extract the attributes of the reflecting surface from the waveform. The proposed method analyzes the geospatial relationship between the return signals by combining the sequential waves. The idea of this method is to analyze the waveform parameters from sequential waves. Since the adjacent return signals are geospatially correlated, they have similar waveform properties that can be used to validate the correctness of the extracted waveform parameters. The proposed method includes three major steps: (1) single-waveform processing for the initial echo detection; (2) multi-waveform processing using waveform alignment and stacking; (3) verification of the enhanced weak return. The experimental waveform lidar data were acquired using Leica ALS60, Optech Pegasus, and Riegl Q680i. The experimental result indicates that the proposed method successfully extracts the weak returns while considering the geospatial relationships. The correctness and increasing rate of the extracted ground points are related to the vegetated coverage such as the complexity and density. The correctness is above 76% in this study. Because the nearest waveform has a higher correlation, the increase in distance of adjacent waveforms will reduce the correctness of the enhanced weak return. Full article
(This article belongs to the Special Issue Future Trends and Applications for Airborne Laser Scanning)
Figures

Graphical abstract

Open AccessArticle Detecting and Quantifying a Massive Invasion of Floating Aquatic Plants in the Río de la Plata Turbid Waters Using High Spatial Resolution Ocean Color Imagery
Remote Sens. 2018, 10(7), 1140; https://doi.org/10.3390/rs10071140
Received: 20 May 2018 / Revised: 6 July 2018 / Accepted: 16 July 2018 / Published: 19 July 2018
PDF Full-text (5954 KB) | HTML Full-text | XML Full-text
Abstract
The massive development of floating plants in floodplain lakes and wetlands in the upper Middle Paraná river in the La Plata basin is environmentally and socioeconomically important. Every year aquatic plant detachments drift downstream arriving in small amounts to the Río de la
[...] Read more.
The massive development of floating plants in floodplain lakes and wetlands in the upper Middle Paraná river in the La Plata basin is environmentally and socioeconomically important. Every year aquatic plant detachments drift downstream arriving in small amounts to the Río de la Plata, but huge temporary invasions have been observed every 10 or 15 years associated to massive floods. From late December 2015, heavy rains driven by a strong El Niño increased river levels, provoking a large temporary invasion of aquatic plants from January to May 2016. This event caused significant disruption of human activities via clogging of drinking water intakes in the estuary, blocking of ports and marinas and introducing dangerous animals from faraway wetlands into the city. In this study, we developed a scheme to map floating vegetation in turbid waters using high-resolution imagery, like Sentinel-2/SMI (MultiSpectral Imager), Landsat-8/OLI (Operational Land Imager), and Aqua/MODIS (MODerate resolution Imager Spectroradiometer)-250 m. A combination of the Floating Algal Index (that make use of the strong signal in the NIR part of the spectrum), plus conditions set on the RED band (to avoid misclassifying highly turbid waters) and on the CIE La*b* color space coordinates (to confirm the visually “green” pixels as floating vegetation) were used. A time-series of multisensor high resolution imagery was analyzed to study the temporal variability, covered area and distribution of the unusual floating macroalgae invasion that started in January 2016 in the Río de la Plata estuary. Full article
Figures

Graphical abstract

Open AccessArticle Analysis of Airborne Optical and Thermal Imagery for Detection of Water Stress Symptoms
Remote Sens. 2018, 10(7), 1139; https://doi.org/10.3390/rs10071139
Received: 13 June 2018 / Revised: 12 July 2018 / Accepted: 16 July 2018 / Published: 19 July 2018
PDF Full-text (2753 KB) | HTML Full-text | XML Full-text
Abstract
High-resolution airborne thermal infrared (TIR) together with sun-induced fluorescence (SIF) and hyperspectral optical images (visible, near- and shortwave infrared; VNIR/SWIR) were jointly acquired over an experimental site. The objective of this study was to evaluate the potential of these state-of-the-art remote sensing techniques
[...] Read more.
High-resolution airborne thermal infrared (TIR) together with sun-induced fluorescence (SIF) and hyperspectral optical images (visible, near- and shortwave infrared; VNIR/SWIR) were jointly acquired over an experimental site. The objective of this study was to evaluate the potential of these state-of-the-art remote sensing techniques for detecting symptoms similar to those occurring during water stress (hereinafter referred to as ‘water stress symptoms’) at airborne level. Flights with two camera systems (Telops Hyper-Cam LW, Specim HyPlant) took place during 11th and 12th June 2014 in Latisana, Italy over a commercial grass (Festuca arundinacea and Poa pratense) farm with plots that were treated with an anti-transpirant agent (Vapor Gard®; VG) and a highly reflective powder (kaolin; KA). Both agents affect energy balance of the vegetation by reducing transpiration and thus reducing latent heat dissipation (VG) and by increasing albedo, i.e., decreasing energy absorption (KA). Concurrent in situ meteorological data from an on-site weather station, surface temperature and chamber flux measurements were obtained. Image data were processed to orthorectified maps of TIR indices (surface temperature (Ts), Crop Water Stress Index (CWSI)), SIF indices (F687, F780) and VNIR/SWIR indices (photochemical reflectance index (PRI), normalised difference vegetation index (NDVI), moisture stress index (MSI), etc.). A linear mixed effects model that respects the nested structure of the experimental setup was employed to analyse treatment effects on the remote sensing parameters. Airborne Ts were in good agreement (∆T < 0.35 K) compared to in situ Ts measurements. Maps and boxplots of TIR-based indices show diurnal changes: Ts was lowest in the early morning, increased by 6 K up to late morning as a consequence of increasing net radiation and air temperature (Tair) and remained stable towards noon due to the compensatory cooling effect of increased plant transpiration; this was also confirmed by the chamber measurements. In the early morning, VG treated plots revealed significantly higher Ts compared to control (CR) plots (p = 0.01), while SIF indices showed no significant difference (p = 1.00) at any of the overpasses. A comparative assessment of the spectral domains regarding their capabilities for water stress detection was limited due to: (i) synchronously overpasses of the two airborne sensors were not feasible, and (ii) instead of a real water stress occurrence only water stress symptoms were simulated by the chemical agents. Nevertheless, the results of the study show that the polymer di-1-p-menthene had an anti-transpiring effect on the plant while photosynthetic efficiency of light reactions remained unaffected. VNIR/SWIR indices as well as SIF indices were highly sensitive to KA, because of an overall increase in spectral reflectance and thus a reduced absorbed energy. On the contrary, the TIR domain was highly sensitive to subtle changes in the temperature regime as induced by VG and KA, whereas VNIR/SWIR and SIF domain were less affected by VG treatment. The benefit of a multi-sensor approach is not only to provide useful information about actual plant status but also on the causes of biophysical, physiological and photochemical changes. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Figures

Figure 1

Open AccessArticle A Comparison of Crop Parameters Estimation Using Images from UAV-Mounted Snapshot Hyperspectral Sensor and High-Definition Digital Camera
Remote Sens. 2018, 10(7), 1138; https://doi.org/10.3390/rs10071138
Received: 30 May 2018 / Revised: 9 July 2018 / Accepted: 9 July 2018 / Published: 18 July 2018
PDF Full-text (8308 KB) | HTML Full-text | XML Full-text
Abstract
Timely and accurate estimates of crop parameters are crucial for agriculture management. Unmanned aerial vehicles (UAVs) carrying sophisticated cameras are very pertinent for this work because they can obtain remote-sensing images with higher temporal, spatial, and ground resolution than satellites. In this study,
[...] Read more.
Timely and accurate estimates of crop parameters are crucial for agriculture management. Unmanned aerial vehicles (UAVs) carrying sophisticated cameras are very pertinent for this work because they can obtain remote-sensing images with higher temporal, spatial, and ground resolution than satellites. In this study, we evaluated (i) the performance of crop parameters estimates using a near-surface spectroscopy (350~2500 nm, 3 nm at 700 nm, 8.5 nm at 1400 nm, 6.5 nm at 2100 nm), a UAV-mounted snapshot hyperspectral sensor (450~950 nm, 8 nm at 532 nm) and a high-definition digital camera (Visible, R, G, B); (ii) the crop surface models (CSMs), RGB-based vegetation indices (VIs), hyperspectral-based VIs, and methods combined therefrom to make multi-temporal estimates of crop parameters and to map the parameters. The estimated leaf area index (LAI) and above-ground biomass (AGB) are obtained by using linear and exponential equations, random forest (RF) regression, and partial least squares regression (PLSR) to combine the UAV based spectral VIs and crop heights (from the CSMs). The results show that: (i) spectral VIs correlate strongly with LAI and AGB over single growing stages when crop height correlates positively with AGB over multiple growth stages; (ii) the correlation between the VIs multiplying crop height and AGB is greater than that between a single VI and crop height; (iii) the AGB estimate from the UAV-mounted snapshot hyperspectral sensor and high-definition digital camera is similar to the results from the ground spectrometer when using the combined methods (i.e., using VIs multiplying crop height, RF and PLSR to combine VIs and crop heights); and (iv) the spectral performance of the sensors is crucial in LAI estimates (the wheat LAI cannot be accurately estimated over multiple growing stages when using only crop height). The LAI estimates ranked from best to worst are ground spectrometer, UAV snapshot hyperspectral sensor, and UAV high-definition digital camera. Full article
Figures

Graphical abstract

Open AccessArticle Imaging Multi-Age Construction Settlement Behaviour by Advanced SAR Interferometry
Remote Sens. 2018, 10(7), 1137; https://doi.org/10.3390/rs10071137
Received: 8 June 2018 / Revised: 11 July 2018 / Accepted: 16 July 2018 / Published: 18 July 2018
PDF Full-text (9457 KB) | HTML Full-text | XML Full-text
Abstract
This paper focuses on the application of Advanced Satellite Synthetic Aperture Radar Interferometry (A-DInSAR) to subsidence-related issues, with particular reference to ground settlements due to external loads. Beyond the stratigraphic setting and the geotechnical properties of the subsoil, other relevant boundary conditions strongly
[...] Read more.
This paper focuses on the application of Advanced Satellite Synthetic Aperture Radar Interferometry (A-DInSAR) to subsidence-related issues, with particular reference to ground settlements due to external loads. Beyond the stratigraphic setting and the geotechnical properties of the subsoil, other relevant boundary conditions strongly influence the reliability of remotely sensed data for quantitative analyses and risk mitigation purposes. Because most of the Persistent Scatterer Interferometry (PSI) measurement points (Persistent Scatterers, PSs) lie on structures and infrastructures, the foundation type and the age of a construction are key factors for a proper interpretation of the time series of ground displacements. To exemplify a methodological approach to evaluate these issues, this paper refers to an analysis carried out in the coastal/deltaic plain west of Rome (Rome and Fiumicino municipalities) affected by subsidence and related damages to structures. This region is characterized by a complex geological setting (alternation of recent deposits with low and high compressibilities) and has been subjected to different urbanisation phases starting in the late 1800s, with a strong acceleration in the last few decades. The results of A-DInSAR analyses conducted from 1992 to 2015 have been interpreted in light of high-resolution geological/geotechnical models, the age of the construction, and the types of foundations of the buildings on which the PSs are located. Collection, interpretation, and processing of geo-thematic data were fundamental to obtain high-resolution models; change detection analyses of the land cover allowed us to classify structures/infrastructures in terms of the construction period. Additional information was collected to define the types of foundations, i.e., shallow versus deep foundations. As a result, we found that only by filtering and partitioning the A-DInSAR datasets on the basis of the above-mentioned boundary conditions can the related time series be considered a proxy of the consolidation process governing the subsidence related to external loads as confirmed by a comparison with results from a physically based back analysis based on Terzaghi’s theory. Therefore, if properly managed, the A-DInSAR data represents a powerful tool for capturing the evolutionary stage of the process for a single building and has potential for forecasting the behaviour of the terrain–foundation–structure combination. Full article
(This article belongs to the Special Issue Imaging Geodesy and Infrastructure Monitoring)
Figures

Graphical abstract

Open AccessArticle Spatial and Temporal Dependency of NDVI Satellite Imagery in Predicting Bird Diversity over France
Remote Sens. 2018, 10(7), 1136; https://doi.org/10.3390/rs10071136
Received: 5 June 2018 / Revised: 14 July 2018 / Accepted: 16 July 2018 / Published: 18 July 2018
PDF Full-text (6336 KB) | HTML Full-text | XML Full-text
Abstract
Continuous-based predictors of habitat characteristics derived from satellite imagery are increasingly used in species distribution models (SDM). This is especially the case of Normalized Difference Vegetation Index (NDVI) which provides estimates of vegetation productivity and heterogeneity. However, when NDVI predictors are incorporated into
[...] Read more.
Continuous-based predictors of habitat characteristics derived from satellite imagery are increasingly used in species distribution models (SDM). This is especially the case of Normalized Difference Vegetation Index (NDVI) which provides estimates of vegetation productivity and heterogeneity. However, when NDVI predictors are incorporated into SDM, synchrony between biological observations and image acquisition must be questionned. Due to seasonal variations of NDVI during the year, landscape patterns of habitats are revealed differently from one date to another leading to variations in models’ performance. In this paper, we investigated the influence of acquisition time period of NDVI to explain and predict bird community patterns over France. We examined if the NDVI acquisition period that best fit the bird data depends on the dominant land cover context. We also compared models based on single time period of NDVI with one model built from the Dynamic Habitat Index (DHI) components which summarize variations in vegetation phenology throughout the year from the fraction of radiation absorbed by the canopy (fPAR). Bird species richness was calculated as response variable for 759 plots of 4 km2 from the French Breeding Bird Survey. Bird specialists and generalists to habitat were considered. NDVI and DHI predictors were both derived from MODIS products. For NDVI, five time periods in 2010 were compared, from late winter to begin of autumn. A climate predictor was also used and Generalized Additive Models were fitted to explain and predict bird species richness. Results showed that NDVI-based proxies of dominant habitat identity and spatial heterogeneity explain more bird community patterns than DHI-based proxies of annual productivity and seasonnality. We also found that models’ performance was both time and context-dependent, varying according to the bird groups. In general, best time period of NDVI did not match with the acquisition period of bird data because in case of synchrony, differences in habitats are less pronounced. These findings suggest that the most powerful approach to estimate bird community patterns is the simplest one. It only requires NDVI predictors from a single appropriate time period, in addition to climate, which makes the approach very operational. Full article
Figures

Graphical abstract

Open AccessArticle Improved Fully Convolutional Network with Conditional Random Fields for Building Extraction
Remote Sens. 2018, 10(7), 1135; https://doi.org/10.3390/rs10071135
Received: 2 June 2018 / Revised: 4 July 2018 / Accepted: 10 July 2018 / Published: 18 July 2018
PDF Full-text (12260 KB) | HTML Full-text | XML Full-text
Abstract
Building extraction from remotely sensed imagery plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Several published contributions dedicated to the applications of deep convolutional neural networks (DCNN) for building extraction using aerial/satellite imagery
[...] Read more.
Building extraction from remotely sensed imagery plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Several published contributions dedicated to the applications of deep convolutional neural networks (DCNN) for building extraction using aerial/satellite imagery exists. However, in all these contributions, high accuracy is always obtained at the price of extremely complex and large network architectures. In this paper, we present an enhanced fully convolutional network (FCN) framework that is designed for building extraction of remotely sensed images by applying conditional random fields (CRFs). The main objective is to propose a methodology selecting a framework that balances high accuracy with low network complexity. A modern activation function, namely, the exponential linear unit (ELU), is applied to improve the performance of the fully convolutional network (FCN), thereby resulting in more accurate building prediction. To further reduce the noise (falsely classified buildings) and to sharpen the boundaries of the buildings, a post-processing conditional random fields (CRFs) is added at the end of the adopted convolutional neural network (CNN) framework. The experiments were conducted on Massachusetts building aerial imagery. The results show that our proposed framework outperformed the fully convolutional network (FCN), which is the existing baseline framework for semantic segmentation, in terms of performance measures such as the F1-score and IoU measure. Additionally, the proposed method outperformed a pre-existing classifier for building extraction using the same dataset in terms of the performance measures and network complexity. Full article
(This article belongs to the Special Issue Recent Advances in Neural Networks for Remote Sensing)
Figures

Figure 1

Open AccessArticle Mapping the Individual Trees in Urban Orchards by Incorporating Volunteered Geographic Information and Very High Resolution Optical Remotely Sensed Data: A Template Matching-Based Approach
Remote Sens. 2018, 10(7), 1134; https://doi.org/10.3390/rs10071134
Received: 23 April 2018 / Revised: 5 July 2018 / Accepted: 15 July 2018 / Published: 18 July 2018
PDF Full-text (9926 KB) | HTML Full-text | XML Full-text
Abstract
This paper presents a collective sensing approach that integrates imperfect Volunteered Geographic Information (VGI) obtained through Citizen Science (CS) tree mapping projects with very high resolution (VHR) optical remotely sensed data for low-cost, fine-scale, and accurate mapping of trees in urban orchards. To
[...] Read more.
This paper presents a collective sensing approach that integrates imperfect Volunteered Geographic Information (VGI) obtained through Citizen Science (CS) tree mapping projects with very high resolution (VHR) optical remotely sensed data for low-cost, fine-scale, and accurate mapping of trees in urban orchards. To this end, an individual tree crown (ITC) detection technique utilizing template matching (TM) was developed for extracting urban orchard trees from VHR optical imagery. To provide the training samples for the TM algorithm, remotely sensed VGI about trees including the crowdsourced data about ITC locations and their crown diameters was adopted in this study. A data quality assessment of the proposed approach in the study area demonstrated that the detected trees had a very high degree of completeness (92.7%), a high thematic accuracy (false discovery rate (FDR) = 0.090, false negative rate (FNR) = 0.073, and F1 score (F1) = 0.918), and a fair positional accuracy (root mean square error(RMSE) = 1.02 m). Overall, the proposed approach based on the crowdsourced training samples generally demonstrated a promising ITC detection performance in our pilot project. Full article
(This article belongs to the Special Issue Citizen Science and Earth Observation II)
Figures

Graphical abstract

Back to Top