17 pages, 1868 KiB  
Article
Comprehensive Evaluation of Rice Qualities under Different Nitrogen Levels in South China
by Chao Ding, Congshan Xu, Bo Lu, Xuhui Zhu, Xikun Luo, Bin He, Cambula Elidio, Zhenghui Liu, Yanfeng Ding, Jie Yang and Ganghua Li
Foods 2023, 12(4), 697; https://doi.org/10.3390/foods12040697 - 6 Feb 2023
Cited by 11 | Viewed by 2838
Abstract
There is a need to comprehensively evaluate the rice quality of different rice varieties under different nitrogen treatments. Therefore, in this study, we used twenty-one hybrid indica rice varieties and twenty-three inbred japonica rice varieties with three nitrogen fertilizer levels to investigate differences [...] Read more.
There is a need to comprehensively evaluate the rice quality of different rice varieties under different nitrogen treatments. Therefore, in this study, we used twenty-one hybrid indica rice varieties and twenty-three inbred japonica rice varieties with three nitrogen fertilizer levels to investigate differences in rice qualities. As compared with hybrid indica rice, inbred japonica rice had lower coefficient of variation values for grain shape, mild rice percentage, and head rice percentage, but relatively higher coefficient of variation values for chalkiness traits, appearance, and taste value of cooked rice. A principal component analysis and membership function method were used to comprehensively evaluate the qualities of rice. The overall eating quality value by sensory evaluation and head rice percentage explained 61.3% and 67.9% of the variations in comprehensive quality of hybrid indica rice and inbred japonica rice across different nitrogen levels, respectively. We also found that rice comprehensive quality was better under low nitrogen levels for hybrid indica rice, while for inbred japonica rice, properly increasing nitrogen application could improve the comprehensive quality. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

12 pages, 2190 KiB  
Article
A New Regulatory Network Controls Chilling Injury in Peach Fruit by γ-Aminobutyric Acid
by Chunbo Song, Cheng Zhou, Yongjian Pan and Zhenfeng Yang
Foods 2023, 12(4), 696; https://doi.org/10.3390/foods12040696 - 6 Feb 2023
Cited by 8 | Viewed by 2163
Abstract
The control of chilling injury in peach fruit by a new regulator network, that exogenous γ-aminobutyric acid (GABA) regulates the metabolisms of polyamines (PAs), the GABA shunt, and proline, is still unclear. This study found that GABA induced an increase in the expression [...] Read more.
The control of chilling injury in peach fruit by a new regulator network, that exogenous γ-aminobutyric acid (GABA) regulates the metabolisms of polyamines (PAs), the GABA shunt, and proline, is still unclear. This study found that GABA induced an increase in the expression of PpADC and PpODC and a decrease in the expression of PpPAO expression, resulting in the accumulation of PAs. There was also an increase in the expression of PpGAD, which improved GABA content, and an increase in the expression of PpP5CS and PpOAT, which improved proline content. The correlation analysis showed that an increase in PpADC/PpP5CS expression was closely associated with the accumulation of putrescine and that the synergistic increase in the expression of PpODC and PpGAD/PpP5CS/PpOAT was closely related to the accumulation of spermine, proline, and GABA induced by GABA. Importantly, arginine and PpADC played a key role in putrescine accumulation, whereas ornithine and PpODC/PpOAT played a crucial role in the synergistic accumulation of spermine, proline, and GABA induced by GABA. This study provides new information on GABA-induced cold tolerance in peach fruit. Full article
(This article belongs to the Special Issue Post-harvest Losses and Food Safety in Fruit and Vegetable Produced)
Show Figures

Figure 1

15 pages, 1459 KiB  
Article
Effect of Proofing on the Rheology and Moisture Distribution of Corn Starch-Hydroxypropylmethylcellulose Gluten-Free Dough
by Duqin Zhang
Foods 2023, 12(4), 695; https://doi.org/10.3390/foods12040695 - 6 Feb 2023
Cited by 4 | Viewed by 2499
Abstract
Dough rheology, mainly enabled by gluten in the traditional dough, determines the end-products’ quality, particularly by affecting gas production and retention capacities during proofing. Gluten-free dough has quite different rheological performance compared with gluten-containing dough. To deepen the understanding of gluten-free dough, variations [...] Read more.
Dough rheology, mainly enabled by gluten in the traditional dough, determines the end-products’ quality, particularly by affecting gas production and retention capacities during proofing. Gluten-free dough has quite different rheological performance compared with gluten-containing dough. To deepen the understanding of gluten-free dough, variations of rheology and moisture distribution of corn starch-hydroxypropylmethylcellulose (CS–HPMC) gluten-free dough in the process of proofing were studied. Significant differences were found in terms of soluble carbohydrate composition, moisture distribution, and rheology. Arabinose, glucose, fructose, and mannose were the main composition of soluble carbohydrates in CS–HPMC dough, out of which glucose was preferentially utilized during proofing. Non-freezable water content and third relaxation time decreased from 44.24% and 2171.12 ms to 41.39% and 766.4 ms, respectively, whereas the amplitudes of T23 increased from 0.03% to 0.19%, indicating reduced bounded water proportion and improved water mobility with proofing time. Frequency dependence and the maximum creep compliance increased, whereas zero shear viscosity reduced, suggesting decreased molecular interactions and flowability, but improved dough rigidity. In conclusion, the reduced soluble carbohydrates and improved water mobility decreased molecular entanglements and hydrogen bonding. Furthermore, yeast growth restricted a large amount of water, resulting in declined flowability and increased rigidity. Full article
Show Figures

Figure 1

15 pages, 3114 KiB  
Article
Microbiological Changes during Long-Storage of Beef Meat under Different Temperature and Vacuum-Packaging Conditions
by Pablo Rovira, Giannina Brugnini, Jesica Rodriguez, María C. Cabrera, Ali Saadoun, Guillermo de Souza, Santiago Luzardo and Caterina Rufo
Foods 2023, 12(4), 694; https://doi.org/10.3390/foods12040694 - 6 Feb 2023
Cited by 12 | Viewed by 4511
Abstract
We evaluated a combination of two temperatures and two packaging materials for long-term storage of vacuum-packaged (VP) beef striploins. Microbial populations and microbiome composition were monitored during refrigerated storage (120 days between 0–1.5 °C) and refrigerated-then-frozen storage (28 days between 0–1.5 °C then [...] Read more.
We evaluated a combination of two temperatures and two packaging materials for long-term storage of vacuum-packaged (VP) beef striploins. Microbial populations and microbiome composition were monitored during refrigerated storage (120 days between 0–1.5 °C) and refrigerated-then-frozen storage (28 days between 0–1.5 °C then 92 days at −20 °C) under low-O2 permeability VP and high-O2 permeability VP with an antimicrobial (VPAM). Pseudomonas (PSE) and Enterobacteriaceae (EB) counts in VPAM samples were significantly higher (p < 0.05) than in VP samples at 28, 45, 90, and 120 days of storage. Microbiome data showed that bacteria of the genera Serratia and Brochothrix were more abundant in VPAM samples at 120 days, while lactic acid bacteria (LAB) dominated in VP samples. Frozen temperatures inhibited microbial growth and maintained a relatively stable microbiome. Refrigerated and frozen VPAM samples showed the greatest difference in the predicted metabolic functions at the end of storage driven by the microbiome composition, dominated by PSE and LAB, respectively. Although no signs of visible meat deterioration were observed in any sample, this study suggests that VP meat refrigerated and then frozen achieved better microbiological indicators at the end of the storage period. Full article
(This article belongs to the Special Issue Meat Quality and Microbial Analysis)
Show Figures

Figure 1

12 pages, 1090 KiB  
Article
Analysis of Physicochemical Properties, Lipid Composition, and Oxidative Stability of Cashew Nut Kernel Oil
by Yijun Liu, Leshi Li, Qiuyu Xia and Lijing Lin
Foods 2023, 12(4), 693; https://doi.org/10.3390/foods12040693 - 6 Feb 2023
Cited by 10 | Viewed by 5364
Abstract
Cashew nut kernel oil (CNKO) is an important oil source from tropical crops. The lipid species, composition, and relative content of CNKO were revealed using ultra high performance liquid chromatography time-of-flight tandem mass spectrometry (UPLC-TOF-MS/MS), and the physicochemical properties, functional group structure, and [...] Read more.
Cashew nut kernel oil (CNKO) is an important oil source from tropical crops. The lipid species, composition, and relative content of CNKO were revealed using ultra high performance liquid chromatography time-of-flight tandem mass spectrometry (UPLC-TOF-MS/MS), and the physicochemical properties, functional group structure, and oxidation stability of CNKO at different pressing temperatures were characterized using a near infrared analyzer and other methods. The results showed that CNKO mainly consisted of oleic acid (60.87 ± 0.06%), linoleic acid (17.33 ± 0.28%), stearic acid (10.93 ± 0.31%), and palmitic acid (9.85 ± 0.04%), and a highly unsaturated fatty acid (78.46 ± 0.35%). In addition, 141 lipids, including 102 glycerides and 39 phospholipids, were identified in CNKO. The pressing temperature had a significant effect on the physicochemical properties of cashew kernels, such as acid value, iodine value, and peroxide value, but the change in value was small. The increase in pressing temperature did not lead to changes in the functional group structure of CNKO, but decreased the induction time of CNKO, resulting in a decrease in their oxidative stability. It provided basic data support to guide subsequent cashew kernel processing, quality evaluation, and functional studies. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

13 pages, 1001 KiB  
Perspective
The Potential Therapeutic Role of Lactobacillaceae rhamnosus for Treatment of Inflammatory Bowel Disease
by Hang Guo, Leilei Yu, Fengwei Tian, Wei Chen and Qixiao Zhai
Foods 2023, 12(4), 692; https://doi.org/10.3390/foods12040692 - 5 Feb 2023
Cited by 24 | Viewed by 7761
Abstract
Inflammatory bowel disease (IBD) is a heterogeneous group of diseases associated with chronic inflammation of the intestinal tract, and is highly prevalent worldwide. Although its origin is not yet fully understood, new evidence emphasizes that environmental factors, especially dietary factors and intestinal microbiota [...] Read more.
Inflammatory bowel disease (IBD) is a heterogeneous group of diseases associated with chronic inflammation of the intestinal tract, and is highly prevalent worldwide. Although its origin is not yet fully understood, new evidence emphasizes that environmental factors, especially dietary factors and intestinal microbiota disorders are key triggers of IBD. Probiotics, such as Lactobacillaceae spp., play an essential role in human health as they exert beneficial effects on the composition of the human gastrointestinal microbial community and immune system. Probiotic-based therapies have been shown to be effective in alleviating IBD. Among these, Lactobacillaceae rhamnosus is one of the most widely used strains. L. rhamnosus is widely present in the intestines of healthy individuals; it regulates the intestinal immune system and reduces inflammation through a variety of mechanisms. The purpose of this study was to identify scientific evidence related to L. rhamnosus and IBD, review and summarize the results, and discuss the possible mechanisms of action as a starting point for future research on IBD treatment. Full article
Show Figures

Figure 1

13 pages, 3891 KiB  
Article
Effects of Combining High Pressure Processing Treatments and Konjac Glucomannan and Sodium Caseinate on Gel Properties of Myosin Protein
by Yingying Cao, Lila Zhao and Huaiyu Li
Foods 2023, 12(4), 691; https://doi.org/10.3390/foods12040691 - 5 Feb 2023
Cited by 5 | Viewed by 2267
Abstract
Effects of two high pressure processing treatments and various levels of konjac glucomannan (KGM) and sodium caseinate (SC) on texture properties, water-holding capacity, and ultra-structure of gels of rabbit myosin protein were investigated. The two high pressure processing treatments were as follows: (1) [...] Read more.
Effects of two high pressure processing treatments and various levels of konjac glucomannan (KGM) and sodium caseinate (SC) on texture properties, water-holding capacity, and ultra-structure of gels of rabbit myosin protein were investigated. The two high pressure processing treatments were as follows: (1) mean pressure (200 MPa), low temperature (37 °C), and holding for a short time (5 min) followed heating (80 °C for 40 min) (gel LP + H), and (2) high pressure (500 MPa), high temperature (60 °C), and holding for a long time (30 min) (gel HP). Gel LP + H have better gel properties (increased hardness, springiness, gumminess, adhesiveness, cohesiveness, and water binding capacity) than gels HP. Above all, gels myosin + SC:KGM (2:1) have best gel properties. KGM and SC both significantly improved the gel texture properties and water binding capacity. Full article
(This article belongs to the Special Issue Protein Supply and Demand: Food for the Future)
Show Figures

Figure 1

15 pages, 1327 KiB  
Article
Pork Fat and Meat: A Balance between Consumer Expectations and Nutrient Composition of Four Pig Breeds
by Irina Chernukha, Elena Kotenkova, Viktoriya Pchelkina, Nikolay Ilyin, Dmitry Utyanov, Tatyana Kasimova, Aleksandra Surzhik and Lilia Fedulova
Foods 2023, 12(4), 690; https://doi.org/10.3390/foods12040690 - 5 Feb 2023
Cited by 24 | Viewed by 5201
Abstract
Food fat content is one of the most controversial factors from a consumer’s point of view. Aim: (1) The trends in consumer attitudes towards pork and the fat and meat compositions in Duroc and Altai meat breeds and Livny and Mangalitsa meat and [...] Read more.
Food fat content is one of the most controversial factors from a consumer’s point of view. Aim: (1) The trends in consumer attitudes towards pork and the fat and meat compositions in Duroc and Altai meat breeds and Livny and Mangalitsa meat and fat breeds were studied. (2) Methods: Netnographic studies were used to assess Russian consumer purchasing behavior. Protein, moisture, fat, backfat fatty acid content from pigs, longissimus muscles, and backfat from (A) Altai, (L) Livny, and (M) Russian Mangalitsa breeds were compared with those from (D) Russian Duroc. Raman spectroscopy and histology were applied to the backfat analysis. (3) Results: The attitude of Russian consumers to fatty pork is contradictory: consumers note its high fat content as a negative factor, but the presence of fat and intramuscular fat is welcomed because consumers positively associate them with better taste, tenderness, flavor, and juiciness. The fat of the ‘lean’ D pigs did not show a “healthy” fatty acid ratio, while the n-3 PUFA/n-6 PUFA ratio in the fat of the M pigs was the best, with significant amounts of short-chain fatty acids. The highest UFA content, particularly omega 3 and omega 6 PUFA, was found in the backfat of A pigs with a minimum SFA content. The backfat of L pigs was characterized by a larger size of the adipocytes; the highest monounsaturated and medium chain fatty acid contents and the lowest short-chain fatty acid content; the ratio of omega 3 to omega 6 was 0.07, and the atherogenicity index in L backfat was close to that of D, despite the fact that D pigs are a meat type, while L pigs are a meat and fat type. On the contrary, the thrombogenicity index in L backfat was even lower than the D one. (4) Conclusions: Pork from local breeds can be recommended for functional food production. The requirement to change the promotion strategy for local pork consumption from the position of dietary diversity and health is stated. Full article
(This article belongs to the Special Issue Animal-Based Food Consumption - Trends and Perspectives)
Show Figures

Figure 1

19 pages, 2677 KiB  
Article
Bread Products from Blends of African Climate Resilient Crops: Baking Quality, Sensory Profile and Consumers’ Perception
by Stefano Renzetti, Heikki Aisala, Ruth T. Ngadze, Anita R. Linnemann and Martijn W. Noort
Foods 2023, 12(4), 689; https://doi.org/10.3390/foods12040689 - 5 Feb 2023
Cited by 2 | Viewed by 3438
Abstract
With food insecurity rising dramatically in Sub-Saharan Africa, promoting the use of sorghum, cowpea and cassava flours in staple food such as bread may reduce wheat imports and stimulate the local economy through new value chains. However, studies addressing the technological functionality of [...] Read more.
With food insecurity rising dramatically in Sub-Saharan Africa, promoting the use of sorghum, cowpea and cassava flours in staple food such as bread may reduce wheat imports and stimulate the local economy through new value chains. However, studies addressing the technological functionality of blends of these crops and the sensory properties of the obtained breads are scarce. In this study, cowpea varieties (i.e., Glenda and Bechuana), dry-heating of cowpea flour and cowpea to sorghum ratio were studied for their effects on the physical and sensory properties of breads made from flour blends. Increasing cowpea Glenda flour addition from 9 to 27% (in place of sorghum) significantly improved bread specific volume and crumb texture in terms of instrumental hardness and cohesiveness. These improvements were explained by higher water binding, starch gelatinization temperatures and starch granule integrity during pasting of cowpea compared to sorghum and cassava. Differences in physicochemical properties among cowpea flours did not significantly affect bread properties and texture sensory attributes. However, cowpea variety and dry-heating significantly affected flavour attributes (i.e., beany, yeasty and ryebread). Consumer tests indicated that composite breads could be significantly distinguished for most of the sensory attributes compared to commercial wholemeal wheat bread. Nevertheless, the majority of consumers scored the composite breads from neutral to positive with regard to liking. Using these composite doughs, chapati were produced in Uganda by street vendors and tin breads by local bakeries, demonstrating the practical relevance of the study and the potential impact for the local situation. Overall, this study shows that sorghum, cowpea and cassava flour blends can be used for commercial bread-type applications instead of wheat in Sub-Saharan Africa. Full article
Show Figures

Figure 1

14 pages, 3001 KiB  
Article
Investigation of Structural Characteristics and Solubility Mechanism of Edible Bird Nest: A Mucin Glycoprotein
by Yating Lv, Feifei Xu, Fei Liu and Maoshen Chen
Foods 2023, 12(4), 688; https://doi.org/10.3390/foods12040688 - 5 Feb 2023
Cited by 9 | Viewed by 3201
Abstract
In this study, the possible solubility properties and water-holding capacity mechanism of edible bird nest (EBN) were investigated through a structural analysis of soluble and insoluble fractions. The protein solubility and the water-holding swelling multiple increased from 2.55% to 31.52% and 3.83 to [...] Read more.
In this study, the possible solubility properties and water-holding capacity mechanism of edible bird nest (EBN) were investigated through a structural analysis of soluble and insoluble fractions. The protein solubility and the water-holding swelling multiple increased from 2.55% to 31.52% and 3.83 to 14.00, respectively, with the heat temperature increase from 40 °C to 100 °C. It was observed that the solubility of high-Mw protein increased through heat treatment; meanwhile, part of the low-Mw fragments was estimated to aggregate to high-Mw protein with the hydrophobic interactions and disulfide bonds. The increased crystallinity of the insoluble fraction from 39.50% to 47.81% also contributed to the higher solubility and stronger water-holding capacity. Furthermore, the hydrophobic interactions, hydrogen bonds, and disulfide bonds in EBN were analyzed and the results showed that hydrogen bonds with burial polar group made a favorable contribution to the protein solubility. Therefore, the crystallization area degradation under high temperature with hydrogen bonds and disulfide bonds may be the main reasons underlying the solubility properties and water-holding capacity of EBN. Full article
(This article belongs to the Special Issue Application of Food Hydrocolloids for Hydrogels and Packaging)
Show Figures

Figure 1

20 pages, 747 KiB  
Review
Effects of Fermented Food Consumption on Non-Communicable Diseases
by Priya Patel, Krishna Butani, Akash Kumar, Sudarshan Singh and Bhupendra G. Prajapati
Foods 2023, 12(4), 687; https://doi.org/10.3390/foods12040687 - 4 Feb 2023
Cited by 34 | Viewed by 12071
Abstract
The gastrointestinal flora consists of several microbial strains in variable combinations in both healthy and sick humans. To prevent the risk of the onset of disease and perform normal metabolic and physiological functions with improved immunity, a balance between the host and gastrointestinal [...] Read more.
The gastrointestinal flora consists of several microbial strains in variable combinations in both healthy and sick humans. To prevent the risk of the onset of disease and perform normal metabolic and physiological functions with improved immunity, a balance between the host and gastrointestinal flora must be maintained. Disruption of the gut microbiota triggered by various factors causes several health problems, which promote the progression of diseases. Probiotics and fermented foods act as carriers of live environmental microbes and play a vital role in maintaining good health. These foods have a positive effect on the consumer by promoting gastrointestinal flora. Recent research suggests that the intestinal microbiome is important in reducing the risk of the onset of various chronic diseases, including cardiac disease, obesity, inflammatory bowel disease, several cancers, and type 2 diabetes. The review provides an updated knowledge base about the scientific literature addressing how fermented foods influence the consumer microbiome and promote good health with prevention of non-communicable diseases. In addition, the review proves that the consumption of fermented foods affects gastrointestinal flora in the short and long term and can be considered an important part of the diet. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

18 pages, 3078 KiB  
Article
Preparation of Sourdoughs Fermented with Isolated Lactic Acid Bacteria and Characterization of Their Antifungal Properties
by Carla Lafuente, Jorge Calpe, Leonardo Musto, Tiago de Melo Nazareth, Victor Dopazo, Giuseppe Meca and Carlos Luz
Foods 2023, 12(4), 686; https://doi.org/10.3390/foods12040686 - 4 Feb 2023
Cited by 10 | Viewed by 3696
Abstract
Traditional sourdough is obtained using a mixture of flour and water stored at room temperature until acidification. Therefore, adding lactic acid bacteria (LAB) can improve the quality and safety of sourdough bread. Faced with this problem, four drying techniques—freeze-drying, spray-drying, low-temperature drying, and [...] Read more.
Traditional sourdough is obtained using a mixture of flour and water stored at room temperature until acidification. Therefore, adding lactic acid bacteria (LAB) can improve the quality and safety of sourdough bread. Faced with this problem, four drying techniques—freeze-drying, spray-drying, low-temperature drying, and drying at low humidity—have been applied. Our goals were to isolate LAB strains with antifungal potential against Aspergillus and Penicillium fungi. The antifungal capacity was evaluated with agar diffusion, co-culture in overlay agar, and a microdilution susceptibility assay. In addition, the antifungal compounds generated in sourdough were analyzed. As a result, dried sourdoughs were prepared with Lactiplantibacillus plantarum TN10, Lactiplantibacillus plantarum TF2, Pediococcus pentosaceus TF8, Pediococcus acidilactici TE4, and Pediococcus pentosaceus TI6. The minimum fungicidal concentrations ranged from 25 g/L versus P. verrucosum and 100 g/L against A. flavus. A total of 27 volatile organic compounds were produced. Moreover, the lactic acid content reached 26 g/kg of dry product, and the phenyllactic concentration was significantly higher than the control. The P. pentosaceus TI6 exhibited a higher antifungal capacity in vitro and demonstrated a higher production of antifungal compounds compared to the other strains; therefore, further studies will evaluate the impact of this sourdough in bread manufacture. Full article
(This article belongs to the Special Issue Lactic Cultures: Applications in Food)
Show Figures

Graphical abstract

13 pages, 864 KiB  
Article
Treatment of Ready-To-Eat Cooked Meat Products with Cold Atmospheric Plasma to Inactivate Listeria and Escherichia coli
by Isabella Csadek, Ute Vankat, Julia Schrei, Michelle Graf, Susanne Bauer, Brigitte Pilz, Karin Schwaiger, Frans J. M. Smulders and Peter Paulsen
Foods 2023, 12(4), 685; https://doi.org/10.3390/foods12040685 - 4 Feb 2023
Cited by 7 | Viewed by 3083
Abstract
Ready-to-eat meat products have been identified as a potential vehicle for Listeria monocytogenes. Postprocessing contamination (i.e., handling during portioning and packaging) can occur, and subsequent cold storage together with a demand for products with long shelf life can create a hazardous scenario. [...] Read more.
Ready-to-eat meat products have been identified as a potential vehicle for Listeria monocytogenes. Postprocessing contamination (i.e., handling during portioning and packaging) can occur, and subsequent cold storage together with a demand for products with long shelf life can create a hazardous scenario. Good hygienic practice is augmented by intervention measures in controlling post-processing contamination. Among these interventions, the application of ‘cold atmospheric plasma’ (CAP) has gained interest. The reactive plasma species exert some antibacterial effect, but can also alter the food matrix. We studied the effect of CAP generated from air in a surface barrier discharge system (power densities 0.48 and 0.67 W/cm2) with an electrode-sample distance of 15 mm on sliced, cured, cooked ham and sausage (two brands each), veal pie, and calf liver pâté. Colour of samples was tested immediately before and after CAP exposure. CAP exposure for 5 min effectuated only minor colour changes (ΔE max. 2.7), due to a decrease in redness (a*), and in some cases, an increase in b*. A second set of samples was contaminated with Listeria (L.) monocytogenes, L. innocua and E. coli and then exposed to CAP for 5 min. In cooked cured meats, CAP was more effective in inactivating E. coli (1 to 3 log cycles) than Listeria (from 0.2 to max. 1.5 log cycles). In (non-cured) veal pie and calf liver pâté that had been stored 24 h after CAP exposure, numbers of E. coli were not significantly reduced. Levels of Listeria were significantly reduced in veal pie that had been stored for 24 h (at a level of ca. 0.5 log cycles), but not in calf liver pâté. Antibacterial activity differed between but also within sample types, which requires further studies. Full article
(This article belongs to the Special Issue Foodborne Pathogens Management: From Farm and Pond to Fork)
Show Figures

Figure 1

16 pages, 1232 KiB  
Article
Effect of UV Filters during the Application of Pulsed Light to Reduce Lactobacillus brevis Contamination and 3-Methylbut-2-ene-1-thiol Formation While Preserving the Physicochemical Attributes of Blonde Ale and Centennial Red Ale Beers
by Anubhav Pratap-Singh, Andrew Suwardi, Ronit Mandal, Joana Pico, Simone D. Castellarin, David D. Kitts and Anika Singh
Foods 2023, 12(4), 684; https://doi.org/10.3390/foods12040684 - 4 Feb 2023
Cited by 1 | Viewed by 2467
Abstract
Pulsed light (PL) is a novel, non-thermal technology being used to control the microbial spoilage of foods and beverages. Adverse sensory changes, commonly characterized as “lightstruck”, can occur in beers when exposed to the UV portion of PL due to the formation of [...] Read more.
Pulsed light (PL) is a novel, non-thermal technology being used to control the microbial spoilage of foods and beverages. Adverse sensory changes, commonly characterized as “lightstruck”, can occur in beers when exposed to the UV portion of PL due to the formation of 3-methylbut-2-ene-1-thiol (3-MBT) upon the photodegradation of iso-α-acids. This study is the first to investigate the effect of different portions of the PL spectrum on UV-sensitive beers (light-colored blonde ale and dark-colored centennial red ale) using clear and bronze-tinted UV filters. PL treatments with its entire spectrum, including the ultraviolet portion of the spectrum, resulted in up to 4.2 and 2.4 log reductions of L. brevis in the blonde ale and centennial red ale beers, respectively, but also resulted in the formation of 3-MBT and small but significant changes in physicochemical properties including color, bitterness, pH, and total soluble solids. The application of UV filters effectively maintained 3-MBT below the limit of quantification but significantly reduced microbial deactivation to 1.2 and 1.0 log reductions of L. brevis at 8.9 J/cm2 fluence with a clear filter. Further optimization of the filter wavelengths is considered necessary to fully apply PL for beer processing and possibly other light-sensitive foods and beverages. Full article
Show Figures

Figure 1

12 pages, 1083 KiB  
Article
Effect of Ultra-High Pressure Homogenization (UHPH) and Conventional Thermal Pasteurization on the Volatile Composition of Tiger Nut Beverage
by Idoia Codina-Torrella, Joan Josep Gallardo-Chacón, Bibiana Juan, Buenaventura Guamis and Antonio José Trujillo
Foods 2023, 12(4), 683; https://doi.org/10.3390/foods12040683 - 4 Feb 2023
Cited by 6 | Viewed by 2891
Abstract
Tiger nut beverages are non-alcoholic products that are characterized by their pale color and soft flavor. Conventional heat treatments are widely used in the food industry, although heated products are often damaging to their overall quality. Ultra-high pressure homogenization UHPH) is an emerging [...] Read more.
Tiger nut beverages are non-alcoholic products that are characterized by their pale color and soft flavor. Conventional heat treatments are widely used in the food industry, although heated products are often damaging to their overall quality. Ultra-high pressure homogenization UHPH) is an emerging technology that extends the shelf-life of foods while maintaining most of their fresh characteristics. The present work deals with the comparison of the effect of conventional thermal homogenization-pasteurization (H-P, 18 + 4 MPa at 65 °C, 80 °C for 15 s.) and UHPH (at 200 and 300 MPa, and inlet temperature of 40 °C), on the volatile composition of tiger nut beverage. Headspace-solid phase microextraction (HS-SPME) was used for detecting volatile compounds of beverages, which were then identified by gas chromatography-mass spectrometry (GC-MS). A total of 37 different volatile substances were identified in tiger nut beverages, which were primarily grouped into the aromatic hydrocarbons, alcohols, aldehydes and terpenes chemical families. Stabilizing treatments increased the total amount of volatile compounds (H-P > UHPH > R-P). H-P was the treatment that produced the most changes in the volatile composition of RP, while treatment at 200 MPa had a minor impact. At the end of their storage, these products were also characterized by the same chemical families. This study evidenced the UHPH technology as an alternative processing of tiger nut beverages production that minimally modifies their volatile composition. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1