10 pages, 2825 KiB  
Article
Homogeneous Photo-Fenton Degradation and Mineralization of Model and Simulated Pesticide Wastewaters in Lab- and Pilot-Scale Reactors
by Chrysanthi Berberidou, Petros Kokkinos, Ioannis Poulios and Dionissios Mantzavinos
Catalysts 2022, 12(12), 1512; https://doi.org/10.3390/catal12121512 - 25 Nov 2022
Cited by 6 | Viewed by 1896
Abstract
The homogeneous photocatalytic degradation of model pesticide clopyralid (CLPR) has been investigated under various experimental setups. Lab-scale experiments under UV-A radiation in an acidic environment showed that the degradation rate generally increased when increasing either Fe3+ or H2O2 concentration [...] Read more.
The homogeneous photocatalytic degradation of model pesticide clopyralid (CLPR) has been investigated under various experimental setups. Lab-scale experiments under UV-A radiation in an acidic environment showed that the degradation rate generally increased when increasing either Fe3+ or H2O2 concentration up to a point beyond which (i.e., 100 mg L−1 for peroxide or 7 mg L−1 for ferric ions) Fenton reagents had little or even detrimental effect on degradation. Thus, there is an optimum concentration of Fenton reagents for maximizing treatment performance, beyond which degradation rates are not enhanced. Excessive concentrations of peroxide and/or catalyst may (i) introduce unnecessary treatment costs, (ii) reduce performance due to scavenging effects, and (iii) raise environmental concerns associated with the disposal of, e.g., high concentrations of iron in the receiving water courses. Switching from UV-A to visible light led to similar rates of degradation, i.e., 86% and 82.2%, respectively, after 90 min of reaction, highlighting the potential of using renewable energy, i.e., natural sunlight, to drive the process. Treatment for 120 min also led to 90% mineralization and quantitative release of nitrogen originally present in the pesticide; this was also accompanied by complete elimination of eco-toxicity to Vibrio fischeri. Pilot-scale experiments were performed in a fountain-type reactor using a commercial pesticide formulation containing CLPR. Both the degradation and mineralization rates increased with increasing the intensity of the incident UV-A radiation from 1.88 to 4.03 mW cm−2. Experiments were also conducted with different liquid volumes, i.e., from 3 to 8 L. Illumination of 5 L wastewater resulted in 80% mineralization after 60 min and this only slightly decreased to 73% at 8 L. Overall, the findings underline the promising perspectives of the application of the treatment method in upgrading the quality of water and liquid waste containing pesticides. Full article
(This article belongs to the Special Issue Applications of Heterogeneous Catalysts in Green Chemistry)
Show Figures

Figure 1

13 pages, 2073 KiB  
Article
Enhanced CuAl2O4 Catalytic Activity via Alkalinization Treatment toward High CO2 Conversion during Reverse Water Gas Shift Reaction
by Mian Hu, Hongyu Hu, Suqin Tang and Zhiyan Pan
Catalysts 2022, 12(12), 1511; https://doi.org/10.3390/catal12121511 - 25 Nov 2022
Cited by 11 | Viewed by 2694
Abstract
CO2 catalytic conversion to CO would likely be an important part of CO2 mitigation and utilization. In this work, CuAl2O4 was developed with a spinel structure that acts as an active and stable catalyst for this reaction. Here, [...] Read more.
CO2 catalytic conversion to CO would likely be an important part of CO2 mitigation and utilization. In this work, CuAl2O4 was developed with a spinel structure that acts as an active and stable catalyst for this reaction. Here, the fundamental characteristics of CuAl2O4 catalyst were studied to understand the catalytic mechanism for the Reverse Water Gas Shift reaction. Based on the catalytic mechanism, the CuAl2O4 catalyst was found to have exceptional catalytic activity due to the high dispersion of copper on its surface, and it could have higher catalytic activity by increasing the oxygen vacancies on the surface of the catalyst via alkalinization treatment. By combining with XPS spectra, the relationship between the Raman mode and the oxygen vacancy structure on the CuAl2O4 surface was proved. Through these studies, it was proved that alkalinization treatment can regulate the oxygen vacancies on the surface of the catalyst and thus enhance the catalytic activity. Full article
Show Figures

Figure 1

16 pages, 3860 KiB  
Article
Photocatalytic Transformations of the Resveratrol Derivative in Microflow Reactor
by Milena Mlakić, Anabela Ljubić, Anita Šalić, Bruno Zelić, Ottó Horváth, Valentina Milašinović, Martin Gojun, Krešimir Molčanov and Irena Škorić
Catalysts 2022, 12(12), 1510; https://doi.org/10.3390/catal12121510 - 24 Nov 2022
Cited by 3 | Viewed by 1537
Abstract
A simple and efficient protocol is utilized for the transformation studies of a thiophene analog of E-resveratrol by photocatalytic oxygenation using an anionic and a cationic free-base porphyrin, as well as their manganese(III) complexes. The starting substrate was chosen as a representative [...] Read more.
A simple and efficient protocol is utilized for the transformation studies of a thiophene analog of E-resveratrol by photocatalytic oxygenation using an anionic and a cationic free-base porphyrin, as well as their manganese(III) complexes. The starting substrate was chosen as a representative of heterostilbenes with proven good antioxidant activity. The experiments were carried out in two photoreactor types (batch and microflow reactor) to investigate the impact of the reactor type and design on conversion and photoproduct composition. NMR spectroscopy and UHPLC/MS analyses were applied for the identification and quantification of four photoproducts (Z-1, 2, 3, and 4), results of isomerization, dimerization, cyclization, and oxygenation. Different yields of photoproducts were obtained in a batch reactor and microflow reactor. In the experiments performed in a microflow reactor, Z-1 was most dominant because it was constantly removed from the reaction mixture. Therefore, the formation of other products (2, 3, 4, and undefined) whose precursor is Z-1 was avoided. This was not the case in the experiments performed in a batch reactor. Additionally, all the reactions tested were significantly accelerated in a microflow reactor, making it the preferred reactor type and design for the photocatalytic transformation of resveratrol derivative. Full article
(This article belongs to the Special Issue Microflow (Bio)Catalysis)
Show Figures

Graphical abstract

23 pages, 7933 KiB  
Article
Modeling and Investigation of an Industrial Dehydration and Hydrocarbon-Removal Process by Temperature Swing Adsorption
by Hossein Ghasemzadeh, Mehdi Mehrpooya, Fathollah Pourfayaz, Azad Jarrahian and Mohammad Reza Ganjali
Catalysts 2022, 12(12), 1509; https://doi.org/10.3390/catal12121509 - 24 Nov 2022
Cited by 1 | Viewed by 3953
Abstract
In this study, a water- and heavy hydrocarbon-removal process of a natural gas refinery currently in operation using the temperature swing adsorption method is modeled and investigated. The aim of this process is to decrease the hydrocarbon dew point to −10 °C and [...] Read more.
In this study, a water- and heavy hydrocarbon-removal process of a natural gas refinery currently in operation using the temperature swing adsorption method is modeled and investigated. The aim of this process is to decrease the hydrocarbon dew point to −10 °C and diminish the water content of the gas to about 0.1 ppm. This unit consists of four beds with two layers in which two beds are in the adsorption state, while the others are kept in the regeneration state. The gas composition and the bed specification are obtained from the available data from the refinery. The Ergun equation is considered for the pressure drop calculation. The results show that the developed model can predict the outputs with good accuracy. Sensitivity analysis of operating condition parameters such as temperature, pressure, and regeneration gas flowrate are carried out. Analysis of the regeneration temperature proved that temperature reduction from 268 °C to 210 °C can improve recovery of the heavy components. In addition, the regeneration gas flow rate can be reduced to about 0.4 kmole·s−1 as an optimum value. Moreover, 303 to 310 °C is the optimum range for the feed temperature. Due to the presence of the air cooler in the upstream process, and according to the ambient air temperature, feed temperature can be decreased to obtain better results. Full article
Show Figures

Figure 1

12 pages, 3873 KiB  
Article
Global-Local CNTs Conductive Network Couple with Co-Based Polyhedral Promotes the Electrocatalytic Reduction of Oxygen
by Jinhua Sun, Yuanhui Zuo, Hanyun Wang, Huancong Shi and Shijian Lu
Catalysts 2022, 12(12), 1508; https://doi.org/10.3390/catal12121508 - 24 Nov 2022
Cited by 2 | Viewed by 1492
Abstract
The three-dimensional (3D) nanoreactor of global-local CNTs conductive network coupled with bimetallic MOFs-derived Co@N-C nanopolyhedra (denoted as gl-CNTs/Co@N-C) promotes the electrocatalytic reduction of oxygen owing to the improved mass transfer ability and stability. Here, the 1D/3D gl-CNTs/Co@N-C nanostructures with enhanced electrocatalytic properties were [...] Read more.
The three-dimensional (3D) nanoreactor of global-local CNTs conductive network coupled with bimetallic MOFs-derived Co@N-C nanopolyhedra (denoted as gl-CNTs/Co@N-C) promotes the electrocatalytic reduction of oxygen owing to the improved mass transfer ability and stability. Here, the 1D/3D gl-CNTs/Co@N-C nanostructures with enhanced electrocatalytic properties were synthesized in one step by the direct thermolysis of Zn/Co-ZIF/MWCNTs precursor. Based on systematical optimization of the composition and structure, gl-CNTs/Co@N-C carbonaceous porous hybrids containing uniform Co nanoparticles (NPs) can not only effectively enable the conductivity but also expose more active sites. Consequently, the optimal gl-CNTs/Co@N-C nanostructure showed a significantly enhanced catalytic activity for the reduction of oxygen, the half-wave potential (E1/2) and diffusion-limited current density are 0.86 V (vs. RHE) and 5.34 mA cm−2, respectively. Moreover, this catalyst also showed long-term durability and methanol tolerance property, further highlighting the structure superiority of a precisely controllable nanoreactor. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

18 pages, 4529 KiB  
Article
Characterization and Syngas Production at Low Temperature via Dry Reforming of Methane over Ni-M (M = Fe, Cr) Catalysts Tailored from LDH Structure
by Manel Hallassi, Rafik Benrabaa, Nawal Fodil Cherif, Djahida Lerari, Redouane Chebout, Khaldoun Bachari, Annick Rubbens, Pascal Roussel, Rose-Noëlle Vannier, Martine Trentesaux and Axel Löfberg
Catalysts 2022, 12(12), 1507; https://doi.org/10.3390/catal12121507 - 24 Nov 2022
Cited by 8 | Viewed by 2703
Abstract
Bimetallic layered double oxide (LDO) NiM (M = Cr, Fe) catalysts with nominal compositions of Ni/M = 2 or 3 were tailored from layered double hydroxides (LDH) using a coprecipitation method to investigate the effects of the trivalent metal (Cr or Fe) and [...] Read more.
Bimetallic layered double oxide (LDO) NiM (M = Cr, Fe) catalysts with nominal compositions of Ni/M = 2 or 3 were tailored from layered double hydroxides (LDH) using a coprecipitation method to investigate the effects of the trivalent metal (Cr or Fe) and the amount of Ni species on the structural, textural, reducibility, and catalytic properties for CH4/CO2 reforming. The solids before (LDH) and after (LDO) thermal treatment at 500 °C were characterized using TGA-TD-SM, HT-XRD, XRD, Raman, and IR-ATR spectroscopies; N2 physical adsorption; XPS; and H2-TPR. According to the XRD and Raman analysis, a hydrotalcite structure was present at room temperature and stable up to 250 °C. The interlayer space decreased when the temperature increased, with a lattice parameter and interlayer space of 3.018 Å and 7.017 Å, respectively. The solids fully decomposed into oxide after calcination at 500 °C. NiO and spinel phases (NiM2O4, M = Cr or Fe) were observed in the NiM (M = Cr, Fe) catalysts, and Cr2O3 was detected in the case of NiCr. The NiFe catalysts show low activity and selectivity for DRM in the temperature range explored. In contrast, the chromium compound demonstrated interesting CH4 and CO2 conversions and generally excellent H2 selectivity at low reaction temperatures. CH4 and CO2 conversions of 18–20% with H2/CO of approx. 0.7 could be reached at temperatures as low as 500 °C, but transient behavior and deactivation were observed at higher temperatures or long reaction times. The excellent activity observed during this transient sequence was attributed to the stabilization of the metallic Ni particles formed during the reduction of the NiO phase due to the presence of NiCr2O4, opening the path for the use of these materials in periodic or looping processes for methane reforming at low temperature. Full article
(This article belongs to the Special Issue Recent Trends in Catalysis for Syngas Production and Conversion)
Show Figures

Graphical abstract

9 pages, 1340 KiB  
Article
Effect of Cr on a Ni-Catalyst Supported on Sibunite in Bicyclohexyl Dehydrogenation in Hydrogen Storage Application
by Leonid M. Kustov and Alexander N. Kalenchuk
Catalysts 2022, 12(12), 1506; https://doi.org/10.3390/catal12121506 - 24 Nov 2022
Cited by 6 | Viewed by 1881
Abstract
A comparison of the activity of mono- and bimetallic Ni-Cr/C catalysts deposited on a carbon carrier (sibunite) in the bicyclohexyl dehydrogenation reaction as a stage of hydrogen evolution in hydrogen storage systems is carried out. The interaction of Ni and Cr supported onto [...] Read more.
A comparison of the activity of mono- and bimetallic Ni-Cr/C catalysts deposited on a carbon carrier (sibunite) in the bicyclohexyl dehydrogenation reaction as a stage of hydrogen evolution in hydrogen storage systems is carried out. The interaction of Ni and Cr supported onto the carbon carrier—sibunite in bimetallic NiCr systems affects the change in the parameters of the crystal lattice of nickel, compared with the FCC lattice of Ni, as shown by the methods of XPS, TPR, XRD, high-resolution TEM and electron diffraction. Full article
Show Figures

Figure 1

22 pages, 2527 KiB  
Article
Analysis of the Catalytic Effects Induced by Alkali and Alkaline Earth Metals (AAEMs) on the Pyrolysis of Beech Wood and Corncob
by Wei Wang, Romain Lemaire, Ammar Bensakhria and Denis Luart
Catalysts 2022, 12(12), 1505; https://doi.org/10.3390/catal12121505 - 24 Nov 2022
Cited by 15 | Viewed by 2756
Abstract
The catalytic pyrolysis of beech wood and corncob was experimentally investigated considering six additives containing alkali and alkaline earth metals (Na2CO3, NaOH, NaCl, KCl, CaCl2 and MgCl2). Thermogravimetric analyses (TGA) were carried out with raw feedstocks [...] Read more.
The catalytic pyrolysis of beech wood and corncob was experimentally investigated considering six additives containing alkali and alkaline earth metals (Na2CO3, NaOH, NaCl, KCl, CaCl2 and MgCl2). Thermogravimetric analyses (TGA) were carried out with raw feedstocks and samples impregnated with different concentrations of catalysts. In a bid to better interpret observed trends, measured data were analyzed using an integral kinetic modeling approach considering 14 different reaction models. As highlights, this work showed that cations (Na+, K+, Ca2+, and Mg2+) as well as anions (i.e., CO32−, OH, and Cl) influence pyrolysis in selective ways. Alkaline earth metals were proven to be more effective than alkali metals in fostering biomass decomposition, as evidenced by decreases in the characteristic pyrolysis temperatures and activation energies. Furthermore, the results obtained showed that the higher the basicity of the catalyst, the higher its efficiency as well. Increasing the quantities of calcium- and magnesium-based additives finally led to an enhancement of the decomposition process at low temperatures, although a saturation phenomenon was seen for high catalyst concentrations. Full article
Show Figures

Figure 1

7 pages, 741 KiB  
Article
Electrochemical Reduction of Gaseous CO2 at Low-Intermediate Temperatures Using a Solid Acid Membrane Cell
by Jae Young Kim and Duck Hyun Youn
Catalysts 2022, 12(12), 1504; https://doi.org/10.3390/catal12121504 - 24 Nov 2022
Cited by 1 | Viewed by 2142
Abstract
In this study, the electrochemical reduction of gaseous carbon dioxide (CO2) at low-intermediate temperatures (~250 °C) using a solid acid membrane cell was demonstrated, for the first time. Compared to solid oxide fuel cells, which operate at higher temperatures (>600 °C), [...] Read more.
In this study, the electrochemical reduction of gaseous carbon dioxide (CO2) at low-intermediate temperatures (~250 °C) using a solid acid membrane cell was demonstrated, for the first time. Compared to solid oxide fuel cells, which operate at higher temperatures (>600 °C), this system can utilize the advantage of gaseous CO2 reduction, while being considerably more simply implemented. A Cu-based electrocatalyst was developed as a cathode side catalyst for electrochemical reduction of gaseous CO2 and specifically demonstrated its efficacy to produce hydrocarbons and liquid fuels. The result is significant in terms of resolving the challenges associated with producing hydrocarbons and liquid fuels from CO2 reduction. The present study introduced the novel system with the solid acid membrane cell and the Cu-based catalyst for electrochemically reducing gaseous CO2. This system showed a new possibility for electrochemical reduction of gaseous CO2, as it operates at lower temperatures, produces hydrocarbons and liquid fuels and has plenty of room for improvement. Full article
(This article belongs to the Special Issue Theme Issue in Honor of Prof. Dr. Jae Sung Lee)
Show Figures

Figure 1

12 pages, 5262 KiB  
Article
ZnO Particles Modified MgAl Coatings with Improved Photocatalytic Activity Formed by Plasma Electrolytic Oxidation of AZ31 Magnesium Alloy in Aluminate Electrolyte
by Stevan Stojadinović, Nenad Radić and Rastko Vasilić
Catalysts 2022, 12(12), 1503; https://doi.org/10.3390/catal12121503 - 24 Nov 2022
Cited by 20 | Viewed by 1881
Abstract
MgAl and MgAl/ZnO coatings were prepared by plasma electrolytic oxidation (PEO) of AZ31 magnesium alloy in aluminate electrolyte (5 g/L NaAlO2) without and with addition of ZnO particles in various concentrations. The MgAl coating was partially crystallized and contained MgO and [...] Read more.
MgAl and MgAl/ZnO coatings were prepared by plasma electrolytic oxidation (PEO) of AZ31 magnesium alloy in aluminate electrolyte (5 g/L NaAlO2) without and with addition of ZnO particles in various concentrations. The MgAl coating was partially crystallized and contained MgO and MgAl2O4 phases. The addition of ZnO particles to aluminate electrolyte had no significant effect on the surface morphology of formed coatings, while the Zn content increased with ZnO particle concentrations. X-ray diffraction confirmed the incorporation of ZnO particles in the coatings. The photodegradation of methyl orange (10 cm3 of 8 mg/L) was used to measure the photocatalytic activity (PA) of MgAl and MgAl/ZnO coatings. The PA of MgAl coating after 8 h of irradiation was around 58%, while the PA of MgAl/ZnO coatings formed in aluminate electrolyte with the addition of ZnO particles in concentrations of 4 g/L, 8 g/L, and 12 g/L were around 69%, 86%, and 97%, respectively. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

15 pages, 4733 KiB  
Article
Tuning the Hydrophobicity and Lewis Acidity of UiO-66-NO2 with Decanoic Acid as Modulator to Optimise Conversion of Glucose to 5-Hydroxymethylfurfural
by Yongzhao Zhang, Baiwen Zhao, Satarupa Das, Volkan Degirmenci and Richard I. Walton
Catalysts 2022, 12(12), 1502; https://doi.org/10.3390/catal12121502 - 23 Nov 2022
Cited by 9 | Viewed by 2445
Abstract
Glucose conversion to 5-hydroxymethylfurfural (HMF) is important to the success of a biorefinery. Herein, metal–organic frameworks (MOFs) with the UiO-66 structure were synthesised with decanoic acid as the modulator and used as the catalyst to optimise HMF yield. PXRD, FTIR, and TGA/DSC techniques [...] Read more.
Glucose conversion to 5-hydroxymethylfurfural (HMF) is important to the success of a biorefinery. Herein, metal–organic frameworks (MOFs) with the UiO-66 structure were synthesised with decanoic acid as the modulator and used as the catalyst to optimise HMF yield. PXRD, FTIR, and TGA/DSC techniques were applied to characterise the materials. The analysis results show that the materials assembled from the ligand 2-nitroterephthalic acid and hexameric Zr-oxo clusters contain decanoic acid chemically bound in the framework that influences porosity, Lewis acidity, and hydrophobicity. The materials exhibit excellent catalytic performance for HMF production from glucose in DMSO as solvent, attributed to their abundant defects and high hydrophobicity due to the addition of the decanoic acid modulator. Influences of catalyst dosages, reaction duration, and temperature were comprehensively investigated, leading to 98.1% conversion of glucose and 54.5% HMF yield under optimised reaction conditions. The catalytic conversion shows some deterioration after four cycles, yet the reaction selectivity displays no significant decline. Full article
(This article belongs to the Special Issue Metal-Organic Framework Materials as Catalysts)
Show Figures

Figure 1

25 pages, 3347 KiB  
Review
A Review of Biomass-Derived Heterogeneous Catalysts for Biodiesel Production
by Somasundaram Chandra Kishore, Suguna Perumal, Raji Atchudan, Ashok K. Sundramoorthy, Muthulakshmi Alagan, Sambasivam Sangaraju and Yong Rok Lee
Catalysts 2022, 12(12), 1501; https://doi.org/10.3390/catal12121501 - 23 Nov 2022
Cited by 21 | Viewed by 5655
Abstract
The scientific community is being forced to consider alternative renewable fuels such as biodiesel as a result of the sharp increases in the price of petroleum and the increased demand for petroleum-derived products. Transesterification is a technique used to create biodiesel where a [...] Read more.
The scientific community is being forced to consider alternative renewable fuels such as biodiesel as a result of the sharp increases in the price of petroleum and the increased demand for petroleum-derived products. Transesterification is a technique used to create biodiesel where a variety of edible oils, non-edible oils, and animal fats are used. For this, either a homogeneous or heterogeneous catalyst is utilized. An appropriate catalyst is chosen based on the quantity of free fatty acid content in the oil. The main distinction between homogeneous and heterogeneous catalysts is that compared to the heterogeneous catalyst, the homogeneous catalyst is not affected by the quantity of free fatty acids in the oil. Early methods of producing biodiesel relied on homogeneous catalysts, which have drawbacks such as high flammability, toxicity, corrosion, byproducts such as soap and glycerol, and high wastewater output. The majority of these issues are solved by heterogeneous catalysts. Recent innovations use novel heterogeneous catalysts that are obtained from biomass and biowaste resources. Numerous researchers have documented the use of biomass-derived heterogeneous catalysts in the production of high-quality, pure biodiesel as a potentially greener manufacturing method. The catalysts were significantly altered through conventional physical processes that were both cost- and energy-effective. The present review is intended to analyze catalysts from biowaste for making biodiesel at a minimal cost. The most recent methods for creating diverse kinds of catalysts—including acidic, basic, bifunctional, and nanocatalysts—from various chemicals and biomass are highlighted in this review. Additionally, the effects of various catalyst preparation methods on biodiesel yield are thoroughly explored. Full article
(This article belongs to the Special Issue Applications of Heterogeneous Catalysts in Green Chemistry)
Show Figures

Graphical abstract

12 pages, 4322 KiB  
Article
Egg-Shell-Type MgAl2O4 Pellet Catalyst for Steam Methane Reforming Reaction Activity: Effect of Pellet Preparation Temperature
by Yeon Jeong Yu, Eunkyung Cho and Chang Hyun Ko
Catalysts 2022, 12(12), 1500; https://doi.org/10.3390/catal12121500 - 23 Nov 2022
Cited by 3 | Viewed by 2190
Abstract
A pellet catalyst was prepared to be used in a large-scale steam methane reformer. Hydrotalcite powder (MG30) was used as a precursor to prepare MgAl2O4 pellet supports at different calcination temperatures. Ni-supported catalysts with egg-shell-type distribution were prepared on these [...] Read more.
A pellet catalyst was prepared to be used in a large-scale steam methane reformer. Hydrotalcite powder (MG30) was used as a precursor to prepare MgAl2O4 pellet supports at different calcination temperatures. Ni-supported catalysts with egg-shell-type distribution were prepared on these pellet supports: Ni/sup-x (where x is the calcination temperature of the support with x = 1273, 1373, and 1473 K). Among them, Ni/sup-1473, which experienced the highest calcination temperature (1473 K), showed the highest methane conversion and lowest weight loss owing to carbon deposition. As a result, when the calcination temperature increased, the egg-shell thickness decreased, and the reducibility of the catalyst was enhanced. Although a small amount of Ni (3.5 wt%) was used, the egg-shell-type catalyst had superior catalytic activity and coke resistance. Therefore, the egg-shell-type catalyst using Ni as the active material and MgAl2O4 calcined at high temperature as the support is expected to be appropriate for large-scale industrial steam methane reforming reactions. Full article
Show Figures

Figure 1

11 pages, 2108 KiB  
Review
Research Progress on Sulfur Deactivation and Regeneration over Cu-CHA Zeolite Catalyst
by Jiangli Ma, Shiying Chang, Fei Yu, Huilong Lai and Yunkun Zhao
Catalysts 2022, 12(12), 1499; https://doi.org/10.3390/catal12121499 - 23 Nov 2022
Cited by 7 | Viewed by 2373
Abstract
Benefiting from the exceptional selective catalytic reduction of NOx with ammonia (NH3-SCR) activity, excellent N2 selectivity, and superior hydrothermal durability, the Cu2+-exchanged zeolite catalyst with a chabazite structure (Cu-CHA) has been considered the predominant SCR catalyst in nitrogen [...] Read more.
Benefiting from the exceptional selective catalytic reduction of NOx with ammonia (NH3-SCR) activity, excellent N2 selectivity, and superior hydrothermal durability, the Cu2+-exchanged zeolite catalyst with a chabazite structure (Cu-CHA) has been considered the predominant SCR catalyst in nitrogen oxide (NOx) abatement. However, sulfur poisoning remains one of the most significant deterrents to the catalyst in real applications. This review summarizes the NH3-SCR reaction mechanism on Cu-CHA, including the active sites and the nature of hydrothermal aging resistance. On the basis of the NH3-SCR reaction mechanism, the review gives a comprehensive summary of sulfate species, sulfate loading, emitted gaseous composition, and the impact of exposure temperature/time on Cu-CHA. The nature of the regeneration of sulfated catalysts is also covered in this review. The review gives a valuable summary of new insights into the matching between the design of NH3-SCR activity and sulfur resistance, highlighting the opportunities and challenges presented by Cu-CHA. Guidance for future sulfur poisoning diagnosis, effective regeneration strategies, and a design for an efficient catalyst for the aftertreatment system (ATS) are proposed to minimize the deterioration of NOx abatement in the future. Finally, we call for more attention to be paid to the effects of PO43- and metal co-cations with sulfur in the ATS. Full article
(This article belongs to the Special Issue Exclusive Papers in Environmentally Friendly Catalysis in China)
Show Figures

Figure 1

12 pages, 5017 KiB  
Article
Fabrication of a Plasmonic Heterojunction for Degradation of Oxytetracycline Hydrochloride and Removal of Cr(VI) from Water
by Jihui Cao, Meihua Zhang, Xinran Yang, Xiaojun Zeng, Yubo Yang, Yuanyi Li, Hehua Zeng and Wei Zhao
Catalysts 2022, 12(12), 1498; https://doi.org/10.3390/catal12121498 - 23 Nov 2022
Viewed by 1466
Abstract
A novel Ag/Ag2CO3/BiVO4 plasmonic photocatalyst was successfully prepared by depositing Ag nanoparticles on the surface of Ag2CO3/BiVO4 through the photoreduction reaction. Due to the existence of this novel heterojunction photocatalyst structure, not only [...] Read more.
A novel Ag/Ag2CO3/BiVO4 plasmonic photocatalyst was successfully prepared by depositing Ag nanoparticles on the surface of Ag2CO3/BiVO4 through the photoreduction reaction. Due to the existence of this novel heterojunction photocatalyst structure, not only can it prevent the photogenerated charge recombination, but the unique properties of Ag also have a great advantage in the absorption of light. The Ag/Ag2CO3/BiVO4 photocatalyst showed good catalytic performance in the degradation of oxytetracycline hydrochloride (OTH) and removal of Cr6+, and the degradation rate of OTH reached 98.0% after 150 min of illumination. The successful preparation of Ag/Ag2CO3/BiVO4 was confirmed by a series of characterization methods, and the importance of •OH and h+ radicals in the degradation of OTH was demonstrated. In addition, the photocatalytic mechanism of Ag/Ag2CO3/BiVO4 photocatalyst was systematically studied in terms of degradation of OTH and reduction of Cr6+. This study is of great importance for the development of novel plasmonic heterojunction photocatalysts and to meet future environmental requirements. Full article
(This article belongs to the Special Issue Synthesis and Application of Composite Photocatalysts)
Show Figures

Graphical abstract