15 pages, 2688 KiB  
Article
Dual BACE1 and Cholinesterase Inhibitory Effects of Phlorotannins from Ecklonia cava—An In Vitro and in Silico Study
by Jinhyuk Lee and Mira Jun
Mar. Drugs 2019, 17(2), 91; https://doi.org/10.3390/md17020091 - 1 Feb 2019
Cited by 51 | Viewed by 4357
Abstract
Alzheimer′s disease (AD) is one of the most common neurodegenerative diseases with a multifactorial nature. β-Secretase (BACE1) and acetylcholinesterase (AChE), which are required for the production of neurotoxic β-amyloid (Aβ) and the promotion of Aβ fibril formation, respectively, are considered as prime therapeutic [...] Read more.
Alzheimer′s disease (AD) is one of the most common neurodegenerative diseases with a multifactorial nature. β-Secretase (BACE1) and acetylcholinesterase (AChE), which are required for the production of neurotoxic β-amyloid (Aβ) and the promotion of Aβ fibril formation, respectively, are considered as prime therapeutic targets for AD. In our efforts towards the development of potent multi-target, directed agents for AD treatment, major phlorotannins such as eckol, dieckol, and 8,8′-bieckol from Ecklonia cava (E. cava) were evaluated. Based on the in vitro study, all tested compounds showed potent inhibitory effects on BACE1 and AChE. In particular, 8,8′-bieckol demonstrated the best inhibitory effect against BACE1 and AChE, with IC50 values of 1.62 ± 0.14 and 4.59 ± 0.32 µM, respectively. Overall, kinetic studies demonstrated that all the tested compounds acted as dual BACE1 and AChE inhibitors in a non-competitive or competitive fashion, respectively. In silico docking analysis exhibited that the lowest binding energies of all compounds were negative, and specifically different residues of each target enzyme interacted with hydroxyl groups of phlorotannins. The present study suggested that major phlorotannins derived from E. cava possess significant potential as drug candidates for therapeutic agents against AD. Full article
(This article belongs to the Special Issue Enzyme Inhibitor from Marine Organisms)
Show Figures

Graphical abstract

17 pages, 1097 KiB  
Article
Effect of Oven-Drying on the Recovery of Valuable Compounds from Ulva rigida, Gracilaria sp. and Fucus vesiculosus
by Andreia F.R. Silva, Helena Abreu, Artur M.S. Silva and Susana M. Cardoso
Mar. Drugs 2019, 17(2), 90; https://doi.org/10.3390/md17020090 - 1 Feb 2019
Cited by 69 | Viewed by 6353
Abstract
The effect of oven-drying at 25, 40 and 60 °C was evaluated on three macroalgae of relevance in Europe, namely Ulva rigida, Gracilaria sp. and Fucus vesiculosus, with respect to quality aspects, including their potential to be exploited as a source [...] Read more.
The effect of oven-drying at 25, 40 and 60 °C was evaluated on three macroalgae of relevance in Europe, namely Ulva rigida, Gracilaria sp. and Fucus vesiculosus, with respect to quality aspects, including their potential to be exploited as a source of valuable compounds. Notably, as compared to freeze-drying, oven-drying at 25 °C promoted the extraction of chlorophylls and carotenoids from U. rigida, as well as those of phycoerythrin and chlorophyll a from Gracilaria sp., while 40 °C favored the recovery of fucoxanthin and pheophytin a from F. vesiculosus. On the other hand, the use of oven-drying had a negative impact on the extraction of phenolic compounds from this alga, also diminishing the antioxidant activity of the resulting extracts. Instead, the impact of oven-drying of raw material on the recovery of specific polysaccharides differed among the macroalgae. While the amounts of ulvans and fucoidans obtained from macroalgae dried at higher temperatures tended to be superior, the recovery of agar was not affected with the drying temperatures applied to Gracilaria sp. The overall results showed that oven-drying might serve as a good alternative to stabilize Ulva rigida, Gracilaria sp. and Fucus vesiculosus, especially if extraction of pigments and polysaccharides is aimed, thought the appropriate temperature applied must be adapted for each macroalgae. Full article
(This article belongs to the Special Issue Discovery and Application of Macroalgae-Derived Natural Products)
Show Figures

Figure 1

7 pages, 2473 KiB  
Communication
Novel Antimicrobial Indolepyrazines A and B from the Marine-Associated Acinetobacter sp. ZZ1275
by Komal Anjum, Sidra Kaleem, Wenwen Yi, Guowan Zheng, Xiaoyuan Lian and Zhizhen Zhang
Mar. Drugs 2019, 17(2), 89; https://doi.org/10.3390/md17020089 - 1 Feb 2019
Cited by 23 | Viewed by 3126
Abstract
Two new alkaloids indolepyrazines A (1) and B (2) were isolated from the marine-derived Acinetobacter sp. ZZ1275. Their structures were elucidated through extensive nuclear magnetic resonance (NMR) spectroscopic analyses, high resolution electrospray ionization mass spectroscopy (HRESIMS) data, and electronic [...] Read more.
Two new alkaloids indolepyrazines A (1) and B (2) were isolated from the marine-derived Acinetobacter sp. ZZ1275. Their structures were elucidated through extensive nuclear magnetic resonance (NMR) spectroscopic analyses, high resolution electrospray ionization mass spectroscopy (HRESIMS) data, and electronic circular dichroism (ECD) calculation. Indolepyrazine A represents the first example of alkaloids with an indole-pyrazine-oxindole skeleton. Both 1 and 2 showed antimicrobial activities against methicillin-resistant Staphylococcus aureus, Escherichia coli, and Candida albicans with minimum inhibitory concentration (MIC) values of 12 μg/mL, 8–10 μg/mL, and 12–14 μg/mL, respectively. Full article
(This article belongs to the Special Issue Anti-Microbial Compounds from Marine Sources)
Show Figures

Figure 1

9 pages, 1302 KiB  
Article
Four New Isocoumarins and a New Natural Tryptamine with Antifungal Activities from a Mangrove Endophytic Fungus Botryosphaeria ramosa L29
by Zhihui Wu, Jiaqing Chen, Xiaolin Zhang, Zelin Chen, Tong Li, Zhigang She, Weijia Ding and Chunyuan Li
Mar. Drugs 2019, 17(2), 88; https://doi.org/10.3390/md17020088 - 1 Feb 2019
Cited by 26 | Viewed by 3723
Abstract
Four new isocoumarin derivatives, botryospyrones A (1), B (2), C (3), and D (4), and a new natural tryptamine, (3aS, 8aS)-1-acetyl-1, 2, 3, 3a, 8, 8a-hexahydropyrrolo [2,3b] indol-3a-ol (5), [...] Read more.
Four new isocoumarin derivatives, botryospyrones A (1), B (2), C (3), and D (4), and a new natural tryptamine, (3aS, 8aS)-1-acetyl-1, 2, 3, 3a, 8, 8a-hexahydropyrrolo [2,3b] indol-3a-ol (5), were isolated from a marine mangrove endophytic fungus Botryosphaeria ramosa L29, obtained from the leaf of Myoporum bontioides. Their structures were elucidated using spectroscopic analysis. The absolute configurations of compounds 3, 4, and 5 were determined by comparison of their circular dichroism (CD) spectra with the calculated data. The inhibitory activities of compound 1 on Fusarium oxysporum, of compounds 2 and 3 on F. oxysporum and Fusarium graminearum, and of compound 5 on F. oxysporum, Penicillium italicum, and F. graminearum were higher than those of triadimefon, widely used as an agricultural fungicide. Compound 5 was produced after using the strategy we called “using inhibitory stress from components of the host” (UISCH), wherein (2R, 3R)-3, 5, 7-trihydroxyflavanone 3-acetate, a component of M. bontioides with weak growth inhibitory activity towards B. ramosa L29, was introduced into the culture medium. Full article
(This article belongs to the Special Issue Marine Microbial Diversity as a Source of Bioactive Natural Products)
Show Figures

Figure 1

20 pages, 2832 KiB  
Article
Antiviral Activity of a Turbot (Scophthalmus maximus) NK-Lysin Peptide by Inhibition of Low-pH Virus-Induced Membrane Fusion
by Alberto Falco, Regla María Medina-Gali, José Antonio Poveda, Melissa Bello-Perez, Beatriz Novoa and José Antonio Encinar
Mar. Drugs 2019, 17(2), 87; https://doi.org/10.3390/md17020087 - 1 Feb 2019
Cited by 33 | Viewed by 4257
Abstract
Global health is under attack by increasingly-frequent pandemics of viral origin. Antimicrobial peptides are a valuable tool to combat pathogenic microorganisms. Previous studies from our group have shown that the membrane-lytic region of turbot (Scophthalmus maximus) NK-lysine short peptide (Nkl71–100 [...] Read more.
Global health is under attack by increasingly-frequent pandemics of viral origin. Antimicrobial peptides are a valuable tool to combat pathogenic microorganisms. Previous studies from our group have shown that the membrane-lytic region of turbot (Scophthalmus maximus) NK-lysine short peptide (Nkl71–100) exerts an anti-protozoal activity, probably due to membrane rupture. In addition, NK-lysine protein is highly expressed in zebrafish in response to viral infections. In this work several biophysical methods, such as vesicle aggregation, leakage and fluorescence anisotropy, are employed to investigate the interaction of Nkl71–100 with different glycerophospholipid vesicles. At acidic pH, Nkl71–100 preferably interacts with phosphatidylserine (PS), disrupts PS membranes, and allows the content leakage from vesicles. Furthermore, Nkl71–100 exerts strong antiviral activity against spring viremia of carp virus (SVCV) by inhibiting not only the binding of viral particles to host cells, but also the fusion of virus and cell membranes, which requires a low pH context. Such antiviral activity seems to be related to the important role that PS plays in these steps of the replication cycle of SVCV, a feature that is shared by other families of virus-comprising members with health and veterinary relevance. Consequently, Nkl71–100 is shown as a promising broad-spectrum antiviral candidate. Full article
(This article belongs to the Special Issue Marine Small-Molecule Bioactive Agents and Therapeutic Targets)
Show Figures

Figure 1

13 pages, 2182 KiB  
Article
Molecular Networking-Based Analysis of Cytotoxic Saponins from Sea Cucumber Holothuria atra
by Laura Grauso, Afsaneh Yegdaneh, Mohsen Sharifi, Alfonso Mangoni, Behzad Zolfaghari and Virginia Lanzotti
Mar. Drugs 2019, 17(2), 86; https://doi.org/10.3390/md17020086 - 1 Feb 2019
Cited by 35 | Viewed by 6396
Abstract
The saponin composition of a specimen of black sea cucumber, Holothuria atra collected in the Persian Gulf was studied by a combined approach including LC-MS/MS, Molecular Networking, pure compound isolation, and NMR spectroscopy. The saponin composition of Holothuria atra turned out to be [...] Read more.
The saponin composition of a specimen of black sea cucumber, Holothuria atra collected in the Persian Gulf was studied by a combined approach including LC-MS/MS, Molecular Networking, pure compound isolation, and NMR spectroscopy. The saponin composition of Holothuria atra turned out to be more complex than previously reported. The most abundant saponins in the extract (14) were isolated and characterized by 1D- and 2D-NMR experiments. Compound 1 was identified as a new triterpene glycoside saponin, holothurin A5. The side chain of the new saponin 1, unprecedented among triterpene glycosides, is characterized by an electrophilic enone function, which can undergo slow water or methanol addition under neutral conditions. The cytotoxic activity of compounds 14, evaluated on the human cervix carcinoma HeLa cell line, was remarkable, with IC50 values ranging from 1.2 to 2.5 µg/mL. Full article
Show Figures

Graphical abstract

16 pages, 1811 KiB  
Article
Antioxidant and Neuroprotective Potential of the Brown Seaweed Bifurcaria bifurcata in an in vitro Parkinson’s Disease Model
by Joana Silva, Celso Alves, Rafaela Freitas, Alice Martins, Susete Pinteus, Joana Ribeiro, Helena Gaspar, Amparo Alfonso and Rui Pedrosa
Mar. Drugs 2019, 17(2), 85; https://doi.org/10.3390/md17020085 - 1 Feb 2019
Cited by 73 | Viewed by 6884
Abstract
Bifurcaria bifurcata is a marine brown seaweed mainly found on the Atlantic coast. Herein, we report the antioxidant and neuroprotective activities of seven fractions (F1–F7) obtained by normal phase chromatography from the B. bifurcata dichloromethane extract, as well as of its two major [...] Read more.
Bifurcaria bifurcata is a marine brown seaweed mainly found on the Atlantic coast. Herein, we report the antioxidant and neuroprotective activities of seven fractions (F1–F7) obtained by normal phase chromatography from the B. bifurcata dichloromethane extract, as well as of its two major isolated diterpenes. Total phenolic content of fractions was determined by the Folin–Ciocalteu method, while antioxidant activity was evaluated by the DPPH, ORAC, and FRAP assays. Neuroprotective effects were evaluated in a neurotoxic model induced by 6-hydroxydopamine (6-OHDA) in a human neuroblastoma cell line (SH-SY5Y), while the mechanisms associated to neuroprotection were investigated by the determination of mitochondrial membrane potential, H2O2 production, Caspase-3 activity, and by observation of DNA fragmentation. Fractions F4 and F5 exhibited the best neuroprotective and antioxidant activities, respectively. F4 fraction prevented changes in mitochondrial potential, and induced a reduction of H2O2 levels production and an increase in cell viability, suggesting that it may contain multi-target compounds acting on different pathways. Hence, this fraction was subjected to purification steps, affording the known diterpenes eleganolone and eleganonal. Both compounds exhibited antioxidant potential, being interesting candidates for further neuroprotective studies. Full article
Show Figures

Figure 1

12 pages, 3068 KiB  
Article
Characteristics of a Novel Manganese Superoxide Dismutase of a Hadal Sea Cucumber (Paelopatides sp.) from the Mariana Trench
by Yanan Li, Xue Kong and Haibin Zhang
Mar. Drugs 2019, 17(2), 84; https://doi.org/10.3390/md17020084 - 1 Feb 2019
Cited by 17 | Viewed by 3861
Abstract
A novel, cold-adapted, and acid-base stable manganese superoxide dismutase (Ps-Mn-SOD) was cloned from hadal sea cucumber Paelopatides sp. The dimeric recombinant enzyme exhibited approximately 60 kDa in molecular weight, expressed activity from 0 °C to 70 °C with an optimal temperature of 0 [...] Read more.
A novel, cold-adapted, and acid-base stable manganese superoxide dismutase (Ps-Mn-SOD) was cloned from hadal sea cucumber Paelopatides sp. The dimeric recombinant enzyme exhibited approximately 60 kDa in molecular weight, expressed activity from 0 °C to 70 °C with an optimal temperature of 0 °C, and resisted wide pH values from 2.2–13.0 with optimal activity (> 70%) at pH 5.0–12.0. The Km and Vmax of Ps-Mn-SOD were 0.0329 ± 0.0040 mM and 9112 ± 248 U/mg, respectively. At tested conditions, Ps-Mn-SOD was relatively stable in divalent metal ion and other chemicals, such as β-mercaptoethanol, dithiothreitol, Tween 20, Triton X-100, and Chaps. Furthermore, the enzyme showed striking stability in 5 M urea or 4 M guanidine hydrochloride, resisted digestion by proteases, and tolerated a high hydrostatic pressure of 100 MPa. The resistance of Ps-Mn-SOD against low temperature, extreme acidity and alkalinity, chemicals, proteases, and high pressure make it a potential candidate in biopharmaceutical and nutraceutical fields. Full article
Show Figures

Figure 1

14 pages, 2419 KiB  
Article
Isolation, Structure Elucidation and Biological Evaluation of Lagunamide D: A New Cytotoxic Macrocyclic Depsipeptide from Marine Cyanobacteria
by Danmeng Luo, Masteria Y. Putra, Tao Ye, Valerie J. Paul and Hendrik Luesch
Mar. Drugs 2019, 17(2), 83; https://doi.org/10.3390/md17020083 - 1 Feb 2019
Cited by 30 | Viewed by 6020
Abstract
Lagunamide D, a new cytotoxic macrocyclic depsipeptide, was discovered from a collection of marine cyanobacteria from Loggerhead Key in the Dry Tortugas, Florida. An intramolecular ester exchange was observed, where the 26-membered macrocycle could contract to a 24-membered compound via acyl migration at [...] Read more.
Lagunamide D, a new cytotoxic macrocyclic depsipeptide, was discovered from a collection of marine cyanobacteria from Loggerhead Key in the Dry Tortugas, Florida. An intramolecular ester exchange was observed, where the 26-membered macrocycle could contract to a 24-membered compound via acyl migration at the 1,3-diol unit, and the transformation product was named lagunamide D’. The planar structures of both compounds were elucidated using a combination of nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectroscopy (HRMS). The absolute configurations were determined on the basis of enantioselective analysis, modified Mosher’s analysis, Kishi NMR database, and direct comparison with lagunamide A, a structure closely resembling lagunamide D. Lagunamides A and D displayed low-nanomolar antiproliferative activity against A549 human lung adenocarcinoma cells, while the structural transformation from the 26-membered lagunamide D macrocycle to the 24-membered ring structure for lagunamide D’ led to a 9.6-fold decrease in activity. Lagunamide D also displayed potent activity in triggering apoptosis in a dose- and time-dependent manner. Further investigation on the mechanism of action of the lagunamide scaffold is needed to fully explore its therapeutic potential as an anticancer agent. Full article
(This article belongs to the Special Issue Compounds from Cyanobacteria II)
Show Figures

Graphical abstract

14 pages, 2095 KiB  
Article
Metabolomic and Transcriptomic Analyses of Escherichia coli for Efficient Fermentation of L-Fucose
by Jungyeon Kim, Yu Eun Cheong, Inho Jung and Kyoung Heon Kim
Mar. Drugs 2019, 17(2), 82; https://doi.org/10.3390/md17020082 - 29 Jan 2019
Cited by 21 | Viewed by 6557
Abstract
L-Fucose, one of the major monomeric sugars in brown algae, possesses high potential for use in the large-scale production of bio-based products. Although fucose catabolic pathways have been enzymatically evaluated, the effects of fucose as a carbon source on intracellular metabolism in industrial [...] Read more.
L-Fucose, one of the major monomeric sugars in brown algae, possesses high potential for use in the large-scale production of bio-based products. Although fucose catabolic pathways have been enzymatically evaluated, the effects of fucose as a carbon source on intracellular metabolism in industrial microorganisms such as Escherichia coli are still not identified. To elucidate the effects of fucose on cellular metabolism and to find clues for efficient conversion of fucose into bio-based products, comparative metabolomic and transcriptomic analyses were performed on E. coli on L-fucose and on D-glucose as a control. When fucose was the carbon source for E. coli, integration of the two omics analyses revealed that excess gluconeogenesis and quorum sensing led to severe depletion of ATP, resulting in accumulation and export of fucose extracellularly. Therefore, metabolic engineering and optimization are needed for E. coil to more efficiently ferment fucose. This is the first multi-omics study investigating the effects of fucose on cellular metabolism in E. coli. These omics data and their biological interpretation could be used to assist metabolic engineering of E. coli producing bio-based products using fucose-containing brown macroalgae. Full article
(This article belongs to the Collection Marine Polysaccharides)
Show Figures

Graphical abstract

23 pages, 4826 KiB  
Article
Predicting Blood–Brain Barrier Permeability of Marine-Derived Kinase Inhibitors Using Ensemble Classifiers Reveals Potential Hits for Neurodegenerative Disorders
by Fabien Plisson and Andrew M. Piggott
Mar. Drugs 2019, 17(2), 81; https://doi.org/10.3390/md17020081 - 29 Jan 2019
Cited by 41 | Viewed by 6706
Abstract
The recent success of small-molecule kinase inhibitors as anticancer drugs has generated significant interest in their application to other clinical areas, such as disorders of the central nervous system (CNS). However, most kinase inhibitor drug candidates investigated to date have been ineffective at [...] Read more.
The recent success of small-molecule kinase inhibitors as anticancer drugs has generated significant interest in their application to other clinical areas, such as disorders of the central nervous system (CNS). However, most kinase inhibitor drug candidates investigated to date have been ineffective at treating CNS disorders, mainly due to poor blood–brain barrier (BBB) permeability. It is, therefore, imperative to evaluate new chemical entities for both kinase inhibition and BBB permeability. Over the last 35 years, marine biodiscovery has yielded 471 natural products reported as kinase inhibitors, yet very few have been evaluated for BBB permeability. In this study, we revisited these marine natural products and predicted their ability to cross the BBB by applying freely available open-source chemoinformatics and machine learning algorithms to a training set of 332 previously reported CNS-penetrant small molecules. We evaluated several regression and classification models, and found that our optimised classifiers (random forest, gradient boosting, and logistic regression) outperformed other models, with overall cross-validated model accuracies of 80%–82% and 78%–80% on external testing. All 3 binary classifiers predicted 13 marine-derived kinase inhibitors with appropriate physicochemical characteristics for BBB permeability. Full article
(This article belongs to the Special Issue New Frontiers in Marine-Derived Kinase Modulators)
Show Figures

Graphical abstract

27 pages, 24318 KiB  
Review
Quorum Sensing Inhibitors from Marine Microorganisms and Their Synthetic Derivatives
by Jianwei Chen, Bixia Wang, Yaojia Lu, Yuqi Guo, Jiadong Sun, Bin Wei, Huawei Zhang and Hong Wang
Mar. Drugs 2019, 17(2), 80; https://doi.org/10.3390/md17020080 - 28 Jan 2019
Cited by 65 | Viewed by 10855
Abstract
Quorum sensing inhibitors (QSIs) present a promising alternative or potent adjuvants of conventional antibiotics for the treatment of antibiotic-resistant bacterial strains, since they could disrupt bacterial pathogenicity without imposing selective pressure involved in antibacterial treatments. This review covers a series of molecules showing [...] Read more.
Quorum sensing inhibitors (QSIs) present a promising alternative or potent adjuvants of conventional antibiotics for the treatment of antibiotic-resistant bacterial strains, since they could disrupt bacterial pathogenicity without imposing selective pressure involved in antibacterial treatments. This review covers a series of molecules showing quorum sensing (QS) inhibitory activity that are isolated from marine microorganisms, including bacteria, actinomycetes and fungi, and chemically synthesized based on QSIs derived from marine microorganisms. This is the first comprehensive overview of QSIs derived from marine microorganisms and their synthetic analogues with QS inhibitory activity. Full article
Show Figures

Graphical abstract

15 pages, 4364 KiB  
Article
Testing the Neuroprotective Properties of PCSO-524® Using a Neuronal Cell Cycle Suppression Assay
by Beika Zhu, Yang Zhang and Karl Herrup
Mar. Drugs 2019, 17(2), 79; https://doi.org/10.3390/md17020079 - 24 Jan 2019
Cited by 5 | Viewed by 5021
Abstract
Cell cycle reentry is a unified mechanism shared by several neurodegenerative diseases, including Alzheimer’s disease (AD) and Ataxia Telangiectasia (A-T). This phenotype is often related to neuroinflammation in the central nervous system. To mimic brain inflammation in vitro, we adopted the previously established [...] Read more.
Cell cycle reentry is a unified mechanism shared by several neurodegenerative diseases, including Alzheimer’s disease (AD) and Ataxia Telangiectasia (A-T). This phenotype is often related to neuroinflammation in the central nervous system. To mimic brain inflammation in vitro, we adopted the previously established method of using conditioned medium collected from activated THP-1 cells and applied it to both differentiated HT22 cells and primary neurons. Unscheduled cell cycle events were observed in both systems, indicating the potential of this approach as an in vitro model of neurodegenerative disease. We used this assay to measure the neuroprotective effects of New Zealand green-lipped mussel extract, PCSO-524®, to protect post-mitotic cells from cell cycle reentry. We found that, both in vitro and in an animal model, PCSO-524® displayed promising neuroprotective effects, and thus has potential to postpone or prevent the onset of neurodegenerative disease. Full article
Show Figures

Figure 1

18 pages, 2656 KiB  
Article
Preparation and Characterization of Gelatin and Antioxidant Peptides from Gelatin Hydrolysate of Skipjack Tuna (Katsuwonus pelamis) Bone Stimulated by in vitro Gastrointestinal Digestion
by Xiu-Rong Yang, Yu-Qin Zhao, Yi-Ting Qiu, Chang-Feng Chi and Bin Wang
Mar. Drugs 2019, 17(2), 78; https://doi.org/10.3390/md17020078 - 24 Jan 2019
Cited by 103 | Viewed by 6294
Abstract
In China, a large amount of fish bones are produced during the processing of tuna cans production. For full use of those by-products, gelatin (STB-G) with a yield of 6.37 ± 0.64% was extracted from skipjack tuna (Katsuwonus pelamis) bone using [...] Read more.
In China, a large amount of fish bones are produced during the processing of tuna cans production. For full use of those by-products, gelatin (STB-G) with a yield of 6.37 ± 0.64% was extracted from skipjack tuna (Katsuwonus pelamis) bone using water at 60 °C for 8 h. Amino acid analysis showed that STB-G contained Gly (340.3 residues/1000 residues) as the major amino acid and its imino acid content was 177.3 residues/1000 residues. Amino acid composition, SDS-PAGE, and Fourier transform infrared (FTIR) spectrum investigations confirmed that the physicochemical properties of STB-G were similar to those of type I collagen from skipjack tuna bone (STB-C), but partial high molecular weight components of STB-G were degraded during the extraction process, which induced that the gelatin was easier to be hydrolyzed by protease than mammalian gelatins and was suitable for preparation of hydrolysate. Therefore, STB-G was hydrolyzed under in vitro gastrointestinal digestion (pepsin-trypsin system) and five antioxidant peptides were purified from the resulted hydrolysate (STB-GH) and identified as GPDGR, GADIVA, GAPGPQMV, AGPK, and GAEGFIF, respectively. Among the gelatin hydrolysate, fractions, and isolated peptides, GADIVA and GAEGFIF exhibited the strongest scavenging activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (EC50 0.57 and 0.30 mg/mL), hydroxyl radical (EC50 0.25 and 0.32 mg/mL), superoxide anion radical (EC50 0.52 and 0.48 mg/mL), and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical (EC50 0.41 and 0.21 mg/mL). Moreover, GADIVA and GAEGFIF showed a high inhibiting ability on lipid peroxidation in a linoleic acid model system. The strong activities of five isolated peptides profited by their small molecular sizes and the antioxidant amino acid residues in their sequences. These results suggested that five isolated peptides (STP1–STP5), especially GADIVA and GAEGFIF, might serve as potential antioxidants applied in health food industries. Full article
Show Figures

Figure 1

9 pages, 1194 KiB  
Article
Exploration of Indole Alkaloids from Marine Fungus Pseudallescheria boydii F44-1 Using an Amino Acid-Directed Strategy
by Mei-Xiang Yuan, Yi Qiu, Yan-Qin Ran, Gong-Kan Feng, Rong Deng, Xiao-Feng Zhu, Wen-Jian Lan and Hou-Jin Li
Mar. Drugs 2019, 17(2), 77; https://doi.org/10.3390/md17020077 - 23 Jan 2019
Cited by 29 | Viewed by 4743
Abstract
The composition of the culture medium has great influence on the metabolite production of the marine fungus Pseudallescheria boydii F44-1. By adding amino acids to GPY culture medium, two new bisindole alkaloids, pseudboindoles A and B (1 and 2), together with [...] Read more.
The composition of the culture medium has great influence on the metabolite production of the marine fungus Pseudallescheria boydii F44-1. By adding amino acids to GPY culture medium, two new bisindole alkaloids, pseudboindoles A and B (1 and 2), together with 11 known indole alkaloids were isolated from the culture broth. Their structures were elucidated by comprehensive analysis of the NMR, MS, IR, and UV spectra. The 3,3′-cyclohexylidenebis(1H-indole) (3) showed cytotoxic activity against various cancer cell lines. Full article
(This article belongs to the Special Issue Strategies for Enhancing the Metabolome of Marine-Derived Fungi)
Show Figures

Graphical abstract