13 pages, 1621 KB  
Article
Differentially Expressed Genes and Signaling Pathways Potentially Involved in Primary Resistance to Chemo-Immunotherapy in Advanced-Stage Gastric Cancer Patients
by Mauricio P. Pinto, Matías Muñoz-Medel, Ignacio N. Retamal, MariaLoreto Bravo, Verónica Latapiat, Miguel Córdova-Delgado, Charlotte N. Hill, M. Fernanda Fernández, Carolina Sánchez, Mauricio A. Sáez, Alberto J. M. Martin, Sebastián Morales-Pison, Ricardo Fernandez-Ramires, Benjamín García-Bloj, Gareth I. Owen and Marcelo Garrido
Int. J. Mol. Sci. 2023, 24(1), 1; https://doi.org/10.3390/ijms24010001 - 20 Dec 2022
Cited by 8 | Viewed by 4237
Abstract
Recently, the combination of chemotherapy plus nivolumab (chemo-immunotherapy) has become the standard of care for advanced-stage gastric cancer (GC) patients. However, despite its efficacy, up to 40% of patients do not respond to these treatments. Our study sought to identify variations in gene [...] Read more.
Recently, the combination of chemotherapy plus nivolumab (chemo-immunotherapy) has become the standard of care for advanced-stage gastric cancer (GC) patients. However, despite its efficacy, up to 40% of patients do not respond to these treatments. Our study sought to identify variations in gene expression associated with primary resistance to chemo-immunotherapy. Diagnostic endoscopic biopsies were retrospectively obtained from advanced GC patients previously categorized as responders (R) or non-responders (NR). Thirty-four tumor biopsies (R: n = 16, NR: n = 18) were analyzed by 3′ massive analysis of cDNA ends (3′MACE). We found >30 differentially expressed genes between R and NRs. Subsequent pathway enrichment analyses demonstrated that angiogenesis and the Wnt-β-catenin signaling pathway were enriched in NRs. Concomitantly, we performed next generation sequencing (NGS) analyses in a subset of four NR patients that confirmed alterations in genes that belonged to the Wnt/β-catenin and the phosphoinositide 3-kinase (PI3K) pathways. We speculate that angiogenesis, the Wnt, and the PI3K pathways might offer actionable targets. We also discuss therapeutic alternatives for chemo-immunotherapy-resistant advanced-stage GC patients. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Oncology in Chile)
Show Figures

Figure 1

25 pages, 7597 KB  
Article
The Antineoplastic Effect of Carboplatin Is Potentiated by Combination with Pitavastatin or Metformin in a Chemoresistant High-Grade Serous Carcinoma Cell Line
by Mariana Nunes, Diana Duarte, Nuno Vale and Sara Ricardo
Int. J. Mol. Sci. 2023, 24(1), 97; https://doi.org/10.3390/ijms24010097 - 21 Dec 2022
Cited by 7 | Viewed by 3393
Abstract
The combination of Carboplatin with Paclitaxel is the mainstay treatment for high-grade serous carcinoma; however, many patients with advanced disease undergo relapse due to chemoresistance. Drug repurposing coupled with a combination of two or more compounds with independent mechanisms of action has the [...] Read more.
The combination of Carboplatin with Paclitaxel is the mainstay treatment for high-grade serous carcinoma; however, many patients with advanced disease undergo relapse due to chemoresistance. Drug repurposing coupled with a combination of two or more compounds with independent mechanisms of action has the potential to increase the success rate of the antineoplastic treatment. The purpose of this study was to explore whether the combination of Carboplatin with repurposed drugs led to a therapeutic benefit. Hence, we assessed the cytotoxic effects of Carboplatin alone and in combination with several repurposed drugs (Pitavastatin, Metformin, Ivermectin, Itraconazole and Alendronate) in two tumoral models, i.e., Carboplatin (OVCAR8) and Carboplatin-Paclitaxel (OVCAR8 PTX R P) chemoresistant cell lines and in a non-tumoral (HOSE6.3) cell line. Cellular viability was measured using the Presto Blue assay, and the synergistic interactions were evaluated using the Chou–Talalay, Bliss Independence and Highest Single Agent reference models. Combining Carboplatin with Pitavastatin or Metformin displayed the highest cytotoxic effect and the strongest synergism among all combinations for OVCAR8 PTX R P cells, resulting in a chemotherapeutic effect superior to Carboplatin as a single agent. Concerning HOSE6.3 cells, combining Carboplatin with almost all the repurposed drugs demonstrated a safe pharmacological profile. Overall, we propose that Pitavastatin or Metformin could act synergistically in combination with Carboplatin for the management of high-grade serous carcinoma patients with a Carboplatin plus Paclitaxel resistance profile. Full article
Show Figures

Figure 1

22 pages, 6592 KB  
Article
Activated Leukocyte Cell Adhesion Molecule (ALCAM), a Potential ‘Seed’ and ‘Soil’ Receptor in the Peritoneal Metastasis of Gastrointestinal Cancers
by Yi Ming Yang, Lin Ye, Fiona Ruge, Ziqian Fang, Ke Ji, Andrew J. Sanders, Shuqin Jia, Chunyi Hao, Q. Ping Dou, Jiafu Ji and Wen G. Jiang
Int. J. Mol. Sci. 2023, 24(1), 876; https://doi.org/10.3390/ijms24010876 - 3 Jan 2023
Cited by 7 | Viewed by 4935
Abstract
Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166) is a cell–cell adhesion protein conferring heterotypic and homotypic interactions between cells of the same type and different types. It is aberrantly expressed in various cancer types and has been shown to be a regulator of cancer [...] Read more.
Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166) is a cell–cell adhesion protein conferring heterotypic and homotypic interactions between cells of the same type and different types. It is aberrantly expressed in various cancer types and has been shown to be a regulator of cancer metastasis. In the present study, we investigated potential roles of ALCAM in the peritoneal transcoelomic metastasis in gastrointestinal cancers, a metastatic type commonly occurred in gastro-intestinal and gynaecological malignancies and resulting in poor clinical outcomes. Specifically, we studied whether ALCAM acts as both a ‘seed’ receptor in these tumour cells and a ‘soil’ receptor in peritoneal mesothelial cells during cancer metastasis. Gastric cancer and pancreatic cancer tissues with or without peritoneal metastasis were compared for their levels of ALCAM expression. The impact of ALCAM expression in these tumours was also correlated to the patients’ clinical outcomes, namely peritoneal metastasis-free survival. In addition, cancer cells of gastric and pancreatic origins were used to create cell models with decreased or increased levels of ALCAM expression by genetic knocking down or overexpression, respectively. Human peritoneal mesothelial cells were also genetically transfected to generate cell models with different profiles of ALCAM expression. These cell models were used in the tumour-mesothelial interaction assay to assess if and how the interaction was influenced by ALCAM. Both gastric and pancreatic tumour tissues from patients who developed peritoneal metastases had higher levels of ALCAM transcript than those without. Patients who had tumours with high levels of ALCAM had a much shorter peritoneal metastasis free survival compared with those who had low ALCAM expression (p = 0.006). ALCAM knockdown of the mesothelial cell line MET5A rendered the cells with reduced interaction with both gastric cancer cells and pancreatic cancer cells. Likewise, levels of ALCAM in both human gastric and pancreatic cancer cells were also a determining factor for their adhesiveness to mesothelial cells, a process that was likely to be triggered the phosphorylation of the SRC kinase. A soluble ALCAM (sALCAM) was found to be able to inhibit the adhesiveness between cancer cells and mesothelial cells, mechanistically behaving like a SRC kinase inhibitor. ALCAM is an indicator of peritoneal metastasis in both gastric and pancreatic cancer patients. It acts as not only a potential peritoneal ‘soil’ receptor of tumour seeding but also a ‘soil’ receptor in peritoneal mesothelial cells during cancer metastasis. These findings have an important therapeutic implication for treating peritoneal transcoelomic metastases. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Oncology in UK)
Show Figures

Figure 1

15 pages, 4471 KB  
Review
Blockers of Skeletal Muscle Nav1.4 Channels: From Therapy of Myotonic Syndrome to Molecular Determinants of Pharmacological Action and Back
by Michela De Bellis, Brigida Boccanegra, Alessandro Giovanni Cerchiara, Paola Imbrici and Annamaria De Luca
Int. J. Mol. Sci. 2023, 24(1), 857; https://doi.org/10.3390/ijms24010857 - 3 Jan 2023
Cited by 7 | Viewed by 3749
Abstract
The voltage-gated sodium channels represent an important target for drug discovery since a large number of physiological processes are regulated by these channels. In several excitability disorders, including epilepsy, cardiac arrhythmias, chronic pain, and non-dystrophic myotonia, blockers of voltage-gated sodium channels are clinically [...] Read more.
The voltage-gated sodium channels represent an important target for drug discovery since a large number of physiological processes are regulated by these channels. In several excitability disorders, including epilepsy, cardiac arrhythmias, chronic pain, and non-dystrophic myotonia, blockers of voltage-gated sodium channels are clinically used. Myotonia is a skeletal muscle condition characterized by the over-excitability of the sarcolemma, resulting in delayed relaxation after contraction and muscle stiffness. The therapeutic management of this disorder relies on mexiletine and other sodium channel blockers, which are not selective for the Nav1.4 skeletal muscle sodium channel isoform. Hence, the importance of deepening the knowledge of molecular requirements for developing more potent and use-dependent drugs acting on Nav1.4. Here, we review the available treatment options for non-dystrophic myotonia and the structure–activity relationship studies performed in our laboratory with a focus on new compounds with potential antimyotonic activity. Full article
Show Figures

Figure 1

13 pages, 1978 KB  
Article
Cycloartenyl Ferulate Is the Predominant Compound in Brown Rice Conferring Cytoprotective Potential against Oxidative Stress-Induced Cytotoxicity
by Hongyan Wu, Toshiyuki Nakamura, Yingnan Guo, Riho Matsumoto, Shintaro Munemasa, Yoshiyuki Murata and Yoshimasa Nakamura
Int. J. Mol. Sci. 2023, 24(1), 822; https://doi.org/10.3390/ijms24010822 - 3 Jan 2023
Cited by 7 | Viewed by 5951
Abstract
Since brown rice extract is a rich source of biologically active compounds, the present study is aimed to quantify the major compounds in brown rice and to compare their cytoprotective potential against oxidative stress. The content of the main hydrophobic compounds in brown [...] Read more.
Since brown rice extract is a rich source of biologically active compounds, the present study is aimed to quantify the major compounds in brown rice and to compare their cytoprotective potential against oxidative stress. The content of the main hydrophobic compounds in brown rice followed the order of cycloartenyl ferulate (CAF) (89.00 ± 8.07 nmol/g) >> α-tocopherol (αT) (19.73 ± 2.28 nmol/g) > γ-tocotrienol (γT3) (18.24 ± 1.41 nmol/g) > α-tocotrienol (αT3) (16.02 ± 1.29 nmol/g) > γ-tocopherol (γT) (3.81 ± 0.40 nmol/g). However, the percent contribution of CAF to the radical scavenging activity of one gram of whole brown rice was similar to those of αT, αT3, and γT3 because of its weaker antioxidant activity. The CAF pretreatment displayed a significant cytoprotective effect on the hydrogen peroxide-induced cytotoxicity from 10 µM, which is lower than the minimal concentrations of αT and γT required for a significant protection. CAF also enhanced the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation coincided with the enhancement of the heme oxygenase-1 (HO-1) mRNA level. An HO-1 inhibitor, tin protoporphyrin IX (SnPP), significantly impaired the cytoprotection of CAF. The cytoprotective potential of CAF is attributable to its cycloartenyl moiety besides the ferulyl moiety. These results suggested that CAF is the predominant cytoprotector in brown rice against hydrogen peroxide-induced cytotoxicity. Full article
(This article belongs to the Special Issue Bioactive Compounds: From Diet to Therapeutic Use)
Show Figures

Figure 1

11 pages, 2349 KB  
Article
Tumor Microenvironment in Male Breast Carcinoma with Emphasis on Tumor Infiltrating Lymphocytes and PD-L1 Expression
by Iva Brcic, Andrea Maria Kluba, Theresa Marie Godschachner, Christoph Suppan, Peter Regitnig, Nadia Dandachi, Sigurd Friedwald Lax and Marija Balić
Int. J. Mol. Sci. 2023, 24(1), 818; https://doi.org/10.3390/ijms24010818 - 3 Jan 2023
Cited by 7 | Viewed by 3120
Abstract
Male breast cancer (MBC) is rare and usually presents as a locally advanced disease. Stromal tumor-infiltrating lymphocytes (sTILs) are associated with a better response to neoadjuvant chemotherapy and improved prognosis in all molecular subtypes of female breast cancer, but their role in MBC [...] Read more.
Male breast cancer (MBC) is rare and usually presents as a locally advanced disease. Stromal tumor-infiltrating lymphocytes (sTILs) are associated with a better response to neoadjuvant chemotherapy and improved prognosis in all molecular subtypes of female breast cancer, but their role in MBC is less clear. We studied sTILs and the expression of programmed cell death ligand 1 (PD-L1) and pan-TRK in MBC. We retrospectively studied 113 cases of MBC surgically treated between 1988 and 2015. The tumors were evaluated for histological type and grade, stage, intrinsic subtype and sTILs. We performed immunohistochemistry for PD-L1 (clone SP142) and pan-TRK (clone EPR17341) on tissue microarrays. Pan-TRK positive cases were further analyzed by next-generation sequencing. The median age was 69 years (range 60–77). Invasive carcinoma of no special type was found in 94.7% of cases, of which 53.1% were grade 2. Estrogen receptor was positive in 92% of the tumors, progesterone receptor in 85.8%, androgen receptor in 70.8%; 4.4% were human epidermal growth factor receptor 2 (HER2)-positive, and 55.8% HER2-low. 40.7% of tumors were luminal A and 51.3% luminal B, 4.4% HER2-enriched and 3.5% triple negative carcinoma. sTILs density was <50% in 96.4% of the tumors, >50% in 3.6% of the tumors. PD-L1 immune cell score >1% was found in 7.1% of the tumors (all of luminal subtype). A weak focal cytoplasmic pan-TRK staining was present in 8.8% but without NTRK fusion. Neither sTILs nor PD-L1 had statistically significant outcomes. Our findings suggest that a subset of MBC patients harbors an immunological environment characterized by increased sTILs with PD-L1 expression. These patients may potentially benefit from immune checkpoint inhibitor therapy. Frequent HER2-low may offer novel anti-HER2 treatment options. Full article
(This article belongs to the Special Issue Recent Advances in Breast Cancer Research)
Show Figures

Figure 1

12 pages, 2666 KB  
Review
Glucose Homeostasis and Pancreatic Islet Size Are Regulated by the Transcription Factors Elk-1 and Egr-1 and the Protein Phosphatase Calcineurin
by Gerald Thiel and Oliver G. Rössler
Int. J. Mol. Sci. 2023, 24(1), 815; https://doi.org/10.3390/ijms24010815 - 3 Jan 2023
Cited by 7 | Viewed by 2891
Abstract
Pancreatic β-cells synthesize and secrete insulin. A key feature of diabetes mellitus is the loss of these cells. A decrease in the number of β-cells results in decreased biosynthesis of insulin. Increasing the number of β-cells should restore adequate insulin biosynthesis leading to [...] Read more.
Pancreatic β-cells synthesize and secrete insulin. A key feature of diabetes mellitus is the loss of these cells. A decrease in the number of β-cells results in decreased biosynthesis of insulin. Increasing the number of β-cells should restore adequate insulin biosynthesis leading to adequate insulin secretion. Therefore, identifying proteins that regulate the number of β-cells is a high priority in diabetes research. In this review article, we summerize the results of three sophisticated transgenic mouse models showing that the transcription factors Elk-1 and Egr-1 and the Ca2+/calmodulin-regulated protein phosphatase calcineurin control the formation of sufficiently large pancreatic islets. Impairment of the biological activity of Egr-1 and Elk-1 in pancreatic β-cells leads to glucose intolerance and dysregulation of glucose homeostasis, the process that maintains glucose concentration in the blood within a narrow range. Transgenic mice expressing an activated calcineurin mutant also had smaller islets and showed hyperglycemia. Calcineurin induces dephosphorylation of Elk-1 which subsequently impairs Egr-1 biosynthesis and the biological functions of Elk-1 and Egr-1 to regulate islet size and glucose homeostasis. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Graphical abstract

29 pages, 1883 KB  
Review
Strategies to Overcome Resistance to Immune-Based Therapies in Osteosarcoma
by Claudia Maria Hattinger, Iris Chiara Salaroglio, Leonardo Fantoni, Martina Godel, Chiara Casotti, Joanna Kopecka, Katia Scotlandi, Toni Ibrahim, Chiara Riganti and Massimo Serra
Int. J. Mol. Sci. 2023, 24(1), 799; https://doi.org/10.3390/ijms24010799 - 2 Jan 2023
Cited by 7 | Viewed by 3137
Abstract
Improving the prognosis and cure rate of HGOSs (high-grade osteosarcomas) is an absolute need. Immune-based treatment approaches have been increasingly taken into consideration, in particular for metastatic, relapsed and refractory HGOS patients, to ameliorate the clinical results currently achieved. This review is intended [...] Read more.
Improving the prognosis and cure rate of HGOSs (high-grade osteosarcomas) is an absolute need. Immune-based treatment approaches have been increasingly taken into consideration, in particular for metastatic, relapsed and refractory HGOS patients, to ameliorate the clinical results currently achieved. This review is intended to give an overview on the immunotherapeutic treatments targeting, counteracting or exploiting the different immune cell compartments that are present in the HGOS tumor microenvironment. The principle at the basis of these strategies and the possible mechanisms that HGOS cells may use to escape these treatments are presented and discussed. Finally, a list of the currently ongoing immune-based trials in HGOS is provided, together with the results that have been obtained in recently completed clinical studies. The different strategies that are presently under investigation, which are generally aimed at abrogating the immune evasion of HGOS cells, will hopefully help to indicate new treatment protocols, leading to an improvement in the prognosis of patients with this tumor. Full article
Show Figures

Figure 1

16 pages, 3676 KB  
Article
Transcriptional Regulation of Siglec-15 by ETS-1 and ETS-2 in Hepatocellular Carcinoma Cells
by Kaiqin Sheng, Yuecheng Wu, Hanbin Lin, Menghan Fang, Chaorong Xue, Xu Lin and Xinjian Lin
Int. J. Mol. Sci. 2023, 24(1), 792; https://doi.org/10.3390/ijms24010792 - 2 Jan 2023
Cited by 7 | Viewed by 3304
Abstract
Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) has been identified as a crucial immune suppressor in human cancers, comparable to programmed cell death 1 ligand (PD-L1). However, the regulatory mechanisms underlying its transcriptional upregulation in human cancers remain largely unknown. Here, we show that [...] Read more.
Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) has been identified as a crucial immune suppressor in human cancers, comparable to programmed cell death 1 ligand (PD-L1). However, the regulatory mechanisms underlying its transcriptional upregulation in human cancers remain largely unknown. Here, we show that the transcription factors ETS-1 and ETS-2 bound to the Siglec-15 promoter to enhance transcription and expression of Siglec-15 in hepatocellular carcinoma (HCC) cells and that transforming growth factor β-1 (TGF-β1) upregulated the expression of ETS-1 and ETS-2 and facilitated the binding of ETS-1 and ETS-2 to the Siglec-15 promoter. We further demonstrate that TGF-β1 activated the Ras/C-Raf/MEK/ERK1/2 signaling pathway, leading to phosphorylation of ETS-1 and ETS-2, which consequently upregulates the transcription and expression of Siglec-15. Our study defines a detailed molecular profile of how Siglec-15 is transcriptionally regulated which may offer significant opportunity for therapeutic intervention on HCC immunotherapy. Full article
(This article belongs to the Special Issue Non-coding RNAs in Tumor Development and Angiogenesis)
Show Figures

Figure 1

13 pages, 2847 KB  
Article
Bone Regeneration Guided by a Magnetized Scaffold in an Ovine Defect Model
by Melania Maglio, Maria Sartori, Alessandro Gambardella, Tatiana Shelyakova, Valentin Alek Dediu, Matteo Santin, Yolanda Piñeiro, Manuel Bañobre López, Josè Rivas, Anna Tampieri, Simone Sprio, Lucia Martini, Alessandro Gatti, Alessandro Russo, Gianluca Giavaresi and Milena Fini
Int. J. Mol. Sci. 2023, 24(1), 747; https://doi.org/10.3390/ijms24010747 - 1 Jan 2023
Cited by 7 | Viewed by 3829
Abstract
The reconstruction of large segmental defects still represents a critical issue in the orthopedic field. The use of functionalized scaffolds able to create a magnetic environment is a fascinating option to guide the onset of regenerative processes. In the present study, a porous [...] Read more.
The reconstruction of large segmental defects still represents a critical issue in the orthopedic field. The use of functionalized scaffolds able to create a magnetic environment is a fascinating option to guide the onset of regenerative processes. In the present study, a porous hydroxyapatite scaffold, incorporating superparamagnetic Fe3O4 nanoparticles (MNPs), was implanted in a critical bone defect realized in sheep metatarsus. Superparamagnetic nanoparticles functionalized with hyperbranched poly(epsilon-Lysine) peptides and physically complexed with vascular endothelial growth factor (VEGF) where injected in situ to penetrate the magnetic scaffold. The scaffold was fixed with cylindrical permanent NdFeB magnets implanted proximally, and the magnetic forces generated by the magnets enabled the capture of the injected nanoparticles forming a VEGF gradient in its porosity. After 16 weeks, histomorphometric measurements were performed to quantify bone growth and bone-to-implant contact, while the mechanical properties of regenerated bone via an atomic force microscopy (AFM) analysis were investigated. The results showed increased bone regeneration at the magnetized interface; this regeneration was higher in the VEGF-MNP-treated group, while the nanomechanical behavior of the tissue was similar to the pattern of the magnetic field distribution. This new approach provides insights into the ability of magnetic technologies to stimulate bone formation, improving bone/scaffold interaction. Full article
Show Figures

Figure 1

35 pages, 2620 KB  
Review
Active Compounds with Medicinal Potential Found in Maxillariinae Benth. (Orchidaceae Juss.) Representatives—A Review
by Monika M. Lipińska, Łukasz P. Haliński, Marek Gołębiowski and Agnieszka K. Kowalkowska
Int. J. Mol. Sci. 2023, 24(1), 739; https://doi.org/10.3390/ijms24010739 - 1 Jan 2023
Cited by 7 | Viewed by 4184
Abstract
Orchids are widely used in traditional medicine for the treatment of a whole range of different health conditions, and representatives of the Neotropical subtribe Maxillariinae are not an exception. They are utilized, for instance, for their spasmolytic and anti-inflammatory activities. In this work, [...] Read more.
Orchids are widely used in traditional medicine for the treatment of a whole range of different health conditions, and representatives of the Neotropical subtribe Maxillariinae are not an exception. They are utilized, for instance, for their spasmolytic and anti-inflammatory activities. In this work, we analyze the literature concerning the chemical composition of the plant extracts and secretions of this subtribe’s representatives published between 1991 and 2022. Maxillariinae is one of the biggest taxa within the orchid family; however, to date, only 19 species have been investigated in this regard and, as we report, they produce 62 semiochemicals of medical potential. The presented review is the first summary of biologically active compounds found in Maxillariinae. Full article
(This article belongs to the Special Issue Orchid Biochemistry)
Show Figures

Figure 1

14 pages, 2369 KB  
Article
Revisiting the Phylogenetic Relationship and Evolution of Gargarini with Mitochondrial Genome (Hemiptera: Membracidae: Centrotinae)
by Feng-E Li, Lin Yang, Jian-Kun Long, Zhi-Min Chang and Xiang-Sheng Chen
Int. J. Mol. Sci. 2023, 24(1), 694; https://doi.org/10.3390/ijms24010694 - 30 Dec 2022
Cited by 7 | Viewed by 3130
Abstract
In this study, we newly sequenced and analyzed the complete mitochondrial genomes of five genera and six species in Gargarini: Antialcidas floripennae, Centrotoscelus davidi, Kotogargara minuta, Machaerotypus stigmosus, Tricentrus fulgidus, and Tricentrus gammamaculatus. The mitochondrial genomes contain 13 [...] Read more.
In this study, we newly sequenced and analyzed the complete mitochondrial genomes of five genera and six species in Gargarini: Antialcidas floripennae, Centrotoscelus davidi, Kotogargara minuta, Machaerotypus stigmosus, Tricentrus fulgidus, and Tricentrus gammamaculatus. The mitochondrial genomes contain 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and a control region. The lengths of the mitochondrial genomes are 15,253 bp to 15,812 bp, and the AT contents of the obtained mitogenomes indicate a strong AT bias, ranging from 75.8% to 78.5%. The start codons of all PCGs show that most start with a typical ATN (ATA/T/G/C) codon and less start with T/GTG; the stop codon TAA is frequently used, and TAG and a single T are less used. In Gargarini mitogenomes, all tRNA genes can be folded into the canonical cloverleaf secondary structure, except for trnaS1, which lacks a stable dihydrouridine (DHU) stem and is replaced by a simple loop. At the same time, the phylogenetic analysis of the tribe Gargarini based on sequence data of 13 PCGs from 18 treehopper species and four outgroups revealed that the 10 Gargarini species form a steady group with strong support and form a sister group with Leptocentrini, Hypsauchenini, Centrotini, and Leptobelini. Diversification within Gargarini is distinguished by a Later Cretaceous divergence that led to the rapid diversification of the species. Moreover, the ancestral state reconstructions analysis showed the absence of the suprahumeral horn, which was confirmed as the ancestor characteristic of the treehopper, which has evolved from simple to complex. Our results shed new light specifically on the molecular and phylogenetic evolution of the pronotum in Gargarini. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

27 pages, 8864 KB  
Article
Prediction of Drug Synergism between Peptides and Antineoplastic Drugs Paclitaxel, 5-Fluorouracil, and Doxorubicin Using In Silico Approaches
by Nuno Vale, Mariana Pereira, Joana Santos, Catarina Moura, Lara Marques and Diana Duarte
Int. J. Mol. Sci. 2023, 24(1), 69; https://doi.org/10.3390/ijms24010069 - 21 Dec 2022
Cited by 7 | Viewed by 2409
Abstract
Chemotherapy is the main treatment for most early-stage cancers; nevertheless, its efficacy is usually limited by drug resistance, toxicity, and tumor heterogeneity. Cell-penetrating peptides (CPPs) are small peptide sequences that can be used to increase the delivery rate of chemotherapeutic drugs to the [...] Read more.
Chemotherapy is the main treatment for most early-stage cancers; nevertheless, its efficacy is usually limited by drug resistance, toxicity, and tumor heterogeneity. Cell-penetrating peptides (CPPs) are small peptide sequences that can be used to increase the delivery rate of chemotherapeutic drugs to the tumor site, therefore contributing to overcoming these problems and enhancing the efficacy of chemotherapy. The drug combination is another promising strategy to overcome the aforementioned problems since the combined drugs can synergize through interconnected biological processes and target different pathways simultaneously. Here, we hypothesized that different peptides (P1–P4) could be used to enhance the delivery of chemotherapeutic agents into three different cancer cells (HT-29, MCF-7, and PC-3). In silico studies were performed to simulate the pharmacokinetic (PK) parameters of each peptide and antineoplastic agent to help predict synergistic interactions in vitro. These simulations predicted peptides P2–P4 to have higher bioavailability and lower Tmax, as well as the chemotherapeutic agent 5-fluorouracil (5-FU) to have enhanced permeability properties over other antineoplastic agents, with P3 having prominent accumulation in the colon. In vitro studies were then performed to evaluate the combination of each peptide with the chemotherapeutic agents as well as to assess the nature of drug interactions through the quantification of the Combination Index (CI). Our findings in MCF-7 and PC-3 cancer cells demonstrated that the combination of these peptides with paclitaxel (PTX) and doxorubicin (DOXO), respectively, is not advantageous over a single treatment with the chemotherapeutic agent. In the case of HT-29 colorectal cancer cells, the combination of P2–P4 with 5-FU resulted in synergistic cytotoxic effects, as predicted by the in silico simulations. Taken together, these findings demonstrate that these CPP6-conjugates can be used as adjuvant agents to increase the delivery of 5-FU into HT-29 colorectal cancer cells. Moreover, these results support the use of in silico approaches for the prediction of the interaction between drugs in combination therapy for cancer. Full article
Show Figures

Figure 1

16 pages, 2724 KB  
Article
Loss of CDKL5 Causes Synaptic GABAergic Defects That Can Be Restored with the Neuroactive Steroid Pregnenolone-Methyl-Ether
by Roberta De Rosa, Serena Valastro, Clara Cambria, Isabella Barbiero, Carolina Puricelli, Marco Tramarin, Silvia Randi, Massimiliano Bianchi, Flavia Antonucci and Charlotte Kilstrup-Nielsen
Int. J. Mol. Sci. 2023, 24(1), 68; https://doi.org/10.3390/ijms24010068 - 21 Dec 2022
Cited by 7 | Viewed by 3305
Abstract
CDKL5 deficiency disorder (CDD) is an X-linked neurodevelopmental disorder characterised by early-onset drug-resistant epilepsy and impaired cognitive and motor skills. CDD is caused by mutations in cyclin-dependent kinase-like 5 (CDKL5), which plays a well-known role in regulating excitatory neurotransmission, while its effect on [...] Read more.
CDKL5 deficiency disorder (CDD) is an X-linked neurodevelopmental disorder characterised by early-onset drug-resistant epilepsy and impaired cognitive and motor skills. CDD is caused by mutations in cyclin-dependent kinase-like 5 (CDKL5), which plays a well-known role in regulating excitatory neurotransmission, while its effect on neuronal inhibition has been poorly investigated. We explored the potential role of CDKL5 in the inhibitory compartment in Cdkl5-KO male mice and primary hippocampal neurons and found that CDKL5 interacts with gephyrin and collybistin, two crucial organisers of the inhibitory postsynaptic sites. Through molecular and electrophysiological approaches, we demonstrated that CDKL5 loss causes a reduced number of gephyrin puncta and surface exposed γ2 subunit-containing GABAA receptors, impacting the frequency of miniature inhibitory postsynaptic currents, which we ascribe to a postsynaptic function of CDKL5. In line with previous data showing that CDKL5 loss impacts microtubule (MT) dynamics, we showed that treatment with pregnenolone-methyl-ether (PME), which promotes MT dynamics, rescues the above defects. The impact of CDKL5 deficiency on inhibitory neurotransmission might explain the presence of drug-resistant epilepsy and cognitive defects in CDD patients. Moreover, our results may pave the way for drug-based therapies that could bypass the need for CDKL5 and provide effective therapeutic strategies for CDD patients. Full article
Show Figures

Figure 1

19 pages, 7425 KB  
Article
Transcriptome Analysis Reveals the Mechanisms of Tolerance to High Concentrations of Calcium Chloride Stress in Parachlorella kessleri
by Xudong Liu, Jinli Zhao, Fangru Nan, Qi Liu, Junping Lv, Jia Feng and Shulian Xie
Int. J. Mol. Sci. 2023, 24(1), 651; https://doi.org/10.3390/ijms24010651 - 30 Dec 2022
Cited by 7 | Viewed by 2649
Abstract
Salt stress is one of the abiotic stress factors that affect the normal growth and development of higher plants and algae. However, few research studies have focused on calcium stress, especially in algae. In this study, the mechanism of tolerance to high calcium [...] Read more.
Salt stress is one of the abiotic stress factors that affect the normal growth and development of higher plants and algae. However, few research studies have focused on calcium stress, especially in algae. In this study, the mechanism of tolerance to high calcium stress of a Parachlorella kessleri strain was explored by the method of transcriptomics combined with physiological and morphological analysis. Concentrations of CaCl2 100 times (3.6 g/L) and 1000 times (36 g/L) greater than the standard culture were set up as stresses. The results revealed the algae could cope with high calcium stress mainly by strengthening photosynthesis, regulating osmotic pressure, and inducing antioxidant defense. Under the stress of 3.6 g/L CaCl2, the algae grew well with normal cell morphology. Although the chlorophyll content was significantly reduced, the photosynthetic efficiency was well maintained by up-regulating the expression of some photosynthesis-related genes. The cells reduced oxidative damage by inducing superoxide dismutase (SOD) activities and selenoprotein synthesis. A large number of free amino acids were produced to regulate the osmotic potential. When in higher CaCl2 stress of 36 g/L, the growth and chlorophyll content of algae were significantly inhibited. However, the algae still slowly grew and maintained the same photosynthetic efficiency, which resulted from significant up-regulation of massive photosynthesis genes. Antioxidant enzymes and glycerol were found to resist oxidative damage and osmotic stress, respectively. This study supplied algal research on CaCl2 stress and provided supporting data for further explaining the mechanism of plant salt tolerance. Full article
(This article belongs to the Special Issue Recent Advances in Plant Molecular Science in China 2022)
Show Figures

Figure 1