Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Authors = Magnus Willander

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2581 KB  
Review
Recent Progress on the Electrochemical Biosensing of Escherichia coli O157:H7: Material and Methods Overview
by Nasrin Razmi, Mohammad Hasanzadeh, Magnus Willander and Omer Nur
Biosensors 2020, 10(5), 54; https://doi.org/10.3390/bios10050054 - 18 May 2020
Cited by 53 | Viewed by 10441
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) is a pathogenic strain of Escherichia coli which has issued as a public health threat because of fatal contamination of food and water. Therefore, accurate detection of pathogenic E. coli is important in environmental and food [...] Read more.
Escherichia coli O157:H7 (E. coli O157:H7) is a pathogenic strain of Escherichia coli which has issued as a public health threat because of fatal contamination of food and water. Therefore, accurate detection of pathogenic E. coli is important in environmental and food quality monitoring. In spite of their advantages and high acceptance, culture-based methods, enzyme-linked immunosorbent assays (ELISAs), polymerase chain reaction (PCR), flow cytometry, ATP bioluminescence, and solid-phase cytometry have various drawbacks, including being time-consuming, requiring trained technicians and/or specific equipment, and producing biological waste. Therefore, there is necessity for affordable, rapid, and simple approaches. Electrochemical biosensors have shown great promise for rapid food- and water-borne pathogen detection. Over the last decade, various attempts have been made to develop techniques for the rapid quantification of E. coli O157:H7. This review covers the importance of E. coli O157:H7 and recent progress (from 2015 to 2020) in the development of the sensitivity and selectivity of electrochemical sensors developed for E. coli O157:H7 using different nanomaterials, labels, and electrochemical transducers. Full article
(This article belongs to the Special Issue Electrochemical Biosensors)
Show Figures

Figure 1

10 pages, 2541 KB  
Article
In Situ Growth of CuWO4 Nanospheres over Graphene Oxide for Photoelectrochemical (PEC) Immunosensing of Clinical Biomarker
by Zaheer Abbas, Razium Ali Soomro, Nazar Hussain Kalwar, Mawada Tunesi, Magnus Willander, Selcan Karakuş and Ayben Kilislioğlu
Sensors 2020, 20(1), 148; https://doi.org/10.3390/s20010148 - 25 Dec 2019
Cited by 25 | Viewed by 4955
Abstract
Procalcitonin (PCT) protein has recently been identified as a clinical marker for bacterial infections based on its better sepsis sensitivity. Thus, an increased level of PCT could be linked with disease diagnosis and therapeutics. In this study, we describe the construction of the [...] Read more.
Procalcitonin (PCT) protein has recently been identified as a clinical marker for bacterial infections based on its better sepsis sensitivity. Thus, an increased level of PCT could be linked with disease diagnosis and therapeutics. In this study, we describe the construction of the photoelectrochemical (PEC) PCT immunosensing platform based on it situ grown photo-active CuWO4 nanospheres over reduced graphene oxide layers (CuWO4@rGO). The in situ growth strategy enabled the formation of small nanospheres (diameter of 200 nm), primarily composed of tiny self-assembled CuWO4 nanoparticles (2–5 nm). The synergic coupling of CuWO4 with rGO layers constructed an excellent photo-active heterojunction for photoelectrochemical (PEC) sensing. The platform was then considered for electrocatalytic (EC) mechanism-based detection of PCT, where inhibition of the photocatalytic oxidation signal of ascorbic acid (AA), subsequent to the antibody–antigen interaction, was recorded as the primary signal response. This inhibition detection approach enabled sensitive detection of PCT in a concentration range of 10 pg·mL−1 to 50 ng.mL−1 with signal sensitivity achievable up to 0.15 pg·mL−1. The proposed PEC hybrid (CuWO4@rGO) could further be engineered to detect other clinically important species. Full article
(This article belongs to the Special Issue Nanoimmunosensor)
Show Figures

Graphical abstract

13 pages, 3420 KB  
Article
Synthesis of Heart/Dumbbell-Like CuO Functional Nanostructures for the Development of Uric Acid Biosensor
by Zafar Hussain Ibupoto, Aneela Tahira, Hamid Raza, Gulzar Ali, Aftab Ahmed Khand, Nabila Shah Jilani, Arfana Begum Mallah, Cong Yu and Magnus Willander
Materials 2018, 11(8), 1378; https://doi.org/10.3390/ma11081378 - 8 Aug 2018
Cited by 13 | Viewed by 4293
Abstract
It is always demanded to prepare a nanostructured material with prominent functional properties for the development of a new generation of devices. This study is focused on the synthesis of heart/dumbbell-like CuO nanostructures using a low-temperature aqueous chemical growth method with vitamin B [...] Read more.
It is always demanded to prepare a nanostructured material with prominent functional properties for the development of a new generation of devices. This study is focused on the synthesis of heart/dumbbell-like CuO nanostructures using a low-temperature aqueous chemical growth method with vitamin B12 as a soft template and growth directing agent. CuO nanostructures are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. CuO nanostructures are heart/dumbbell like in shape, exhibit high crystalline quality as demonstrated by XRD, and have no impurity as confirmed by XPS. Apparently, CuO material seems to be porous in structure, which can easily carry large amount of enzyme molecules, thus enhanced performance is shown for the determination of uric acid. The working linear range of the biosensor is 0.001 mM to 10 mM with a detection limit of 0.0005 mM and a sensitivity of 61.88 mV/decade. The presented uric acid biosensor is highly stable, repeatable, and reproducible. The analytical practicality of the proposed uric acid biosensor is also monitored. The fabrication methodology is inexpensive, simple, and scalable, which ensures the capitalization of the developed uric acid biosensor for commercialization. Also, CuO material can be used for various applications such as solar cells, lithium ion batteries, and supercapacitors. Full article
(This article belongs to the Special Issue Metal Oxide Nanostructure for Solid-State Electronics and Sensors)
Show Figures

Figure 1

16 pages, 3837 KB  
Review
Zinc Oxide-Based Self-Powered Potentiometric Chemical Sensors for Biomolecules and Metal Ions
by Muhammad Israr-Qadir, Sadaf Jamil-Rana, Omer Nur and Magnus Willander
Sensors 2017, 17(7), 1645; https://doi.org/10.3390/s17071645 - 19 Jul 2017
Cited by 16 | Viewed by 7073
Abstract
Advances in the miniaturization and portability of the chemical sensing devices have always been hindered by the external power supply problem, which has focused new interest in the fabrication of self-powered sensing devices for disease diagnosis and the monitoring of analytes. This review [...] Read more.
Advances in the miniaturization and portability of the chemical sensing devices have always been hindered by the external power supply problem, which has focused new interest in the fabrication of self-powered sensing devices for disease diagnosis and the monitoring of analytes. This review describes the fabrication of ZnO nanomaterial-based sensors synthesized on different conducting substrates for extracellular detection, and the use of a sharp borosilicate glass capillary (diameter, d = 700 nm) to grow ZnO nanostructures for intracellular detection purposes in individual human and frog cells. The electrocatalytic activity and fast electron transfer properties of the ZnO materials provide the necessary energy to operate as well as a quick sensing device output response, where the role of the nanomorphology utilized for the fabrication of the sensor is crucial for the production of the operational energy. Simplicity, design, cost, sensitivity, selectivity and a quick and stable response are the most important features of a reliable sensor for routine applications. The review details the extra- and intra-cellular applications of the biosensors for the detection and monitoring of different metallic ions present in biological matrices, along with the biomolecules glucose and cholesterol. Full article
(This article belongs to the Special Issue Self-Powered Sensors)
Show Figures

Figure 1

10 pages, 3181 KB  
Article
A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures
by Qurrat-ul-Ain Baloach, Aneela Tahira, Arfana Begum Mallah, Muhammad Ishaq Abro, Siraj Uddin, Magnus Willander and Zafar Hussain Ibupoto
Sensors 2016, 16(11), 1878; https://doi.org/10.3390/s16111878 - 14 Nov 2016
Cited by 25 | Viewed by 6692
Abstract
The production of a nanomaterial with enhanced and desirable electrocatalytic properties is of prime importance, and the commercialization of devices containing these materials is a challenging task. In this study, unique cupric oxide (CuO) nanostructures were synthesized using lysine as a soft template [...] Read more.
The production of a nanomaterial with enhanced and desirable electrocatalytic properties is of prime importance, and the commercialization of devices containing these materials is a challenging task. In this study, unique cupric oxide (CuO) nanostructures were synthesized using lysine as a soft template for the evolution of morphology via a rapid and boiled hydrothermal method. The morphology and structure of the synthesized CuO nanomaterial were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The prepared CuO nanostructures showed high potential for use in the electrocatalytic oxidation of glucose in an alkaline medium. The proposed enzyme-free glucose sensor demonstrated a robust response to glucose with a wide linear range and high sensitivity, selectivity, stability, and reproducibility. To explore its practical feasibility, the glucose content of serum samples was successfully determined using the enzyme-free sensor. An analytical recovery method was used to measure the actual glucose from the serum samples, and the results were satisfactory. Moreover, the presented glucose sensor has high chemical stability and can be reused for repetitive measurements. This study introduces an enzyme-free glucose sensor as an alternative tool for clinical glucose quantification. Full article
(This article belongs to the Special Issue Glucose Sensors: Revolution in Diabetes Management 2016)
Show Figures

Figure 1

13 pages, 2549 KB  
Article
Efficient Donor Impurities in ZnO Nanorods by Polyethylene Glycol for Enhanced Optical and Glutamate Sensing Properties
by Sami Elhag, Kimleang Khun, Volodymyr Khranovskyy, Xianjie Liu, Magnus Willander and Omer Nur
Sensors 2016, 16(2), 222; https://doi.org/10.3390/s16020222 - 6 Feb 2016
Cited by 12 | Viewed by 5766
Abstract
In this paper, we show that the possibility of using polyethylene glycol (EG) as a hydrogen source and it is used to assist the hydrothermal synthesis of ZnO nanorods (ZNRs). EG doping in ZNRs has been found to significantly improve their optical and [...] Read more.
In this paper, we show that the possibility of using polyethylene glycol (EG) as a hydrogen source and it is used to assist the hydrothermal synthesis of ZnO nanorods (ZNRs). EG doping in ZNRs has been found to significantly improve their optical and chemical sensing characteristics toward glutamate. The EG was found to have no role on the structural properties of the ZNRs. However, the x-ray photoelectron spectroscopy (XPS) suggests that the EG could induce donor impurities effect in ZnO. Photoluminescence (PL) and UV-Vis. spectra demonstrated this doping effect. Mott-Schottky analysis at the ZNRs/electrolyte interface was used to investigate the charge density for the doped ZNRs and showed comparable dependence on the used amount of EG. Moreover, the doped ZNRs were used in potentiometric measurements for glutamate for a range from 10−6 M to 10−3 M and the potential response of the sensor electrode was linear with a slope of 91.15 mV/decade. The wide range and high sensitivity of the modified ZNRs based glutamate biosensor is attributed to the doping effect on the ZNRs that is dictated by the EG along with the high surface area-to-volume ratio. The findings in the present study suggest new avenues to control the growth of n-ZnO nanostructures and enhance the performance of their sensing devices. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

18 pages, 2290 KB  
Review
ZnO Nanostructure-Based Intracellular Sensor
by Muhammad H. Asif, Bengt Danielsson and Magnus Willander
Sensors 2015, 15(5), 11787-11804; https://doi.org/10.3390/s150511787 - 21 May 2015
Cited by 29 | Viewed by 7390
Abstract
Recently ZnO has attracted much interest because of its usefulness for intracellular measurements of biochemical species by using its semiconducting, electrochemical, catalytic properties and for being biosafe and biocompatible. ZnO thus has a wide range of applications in optoelectronics, intracellular nanosensors, transducers, energy [...] Read more.
Recently ZnO has attracted much interest because of its usefulness for intracellular measurements of biochemical species by using its semiconducting, electrochemical, catalytic properties and for being biosafe and biocompatible. ZnO thus has a wide range of applications in optoelectronics, intracellular nanosensors, transducers, energy conversion and medical sciences. This review relates specifically to intracellular electrochemical (glucose and free metal ion) biosensors based on functionalized zinc oxide nanowires/nanorods. For intracellular measurements, the ZnO nanowires/nanorods were grown on the tip of a borosilicate glass capillary (0.7 µm in diameter) and functionalized with membranes or enzymes to produce intracellular selective metal ion or glucose sensors. Successful intracellular measurements were carried out using ZnO nanowires/nanorods grown on small tips for glucose and free metal ions using two types of cells, human fat cells and frog oocytes. The sensors in this study were used to detect real-time changes of metal ions and glucose across human fat cells and frog cells using changes in the electrochemical potential at the interface of the intracellular micro-environment. Such devices are helpful in explaining various intracellular processes involving ions and glucose. Full article
(This article belongs to the Special Issue Intracellular Sensing)
Show Figures

Figure 1

13 pages, 1422 KB  
Article
Synthesis of Co3O4 Cotton-Like Nanostructures for Cholesterol Biosensor
by Sami Elhag, Zafar Hussain Ibupoto, Omer Nour and Magnus Willander
Materials 2015, 8(1), 149-161; https://doi.org/10.3390/ma8010149 - 31 Dec 2014
Cited by 26 | Viewed by 8213
Abstract
The use of templates to assist and possess a control over the synthesis of nanomaterials has been an attractive option to achieve this goal. Here we have used sodium dodecyl sulfate (SDS) to act as a template for the low temperature synthesis of [...] Read more.
The use of templates to assist and possess a control over the synthesis of nanomaterials has been an attractive option to achieve this goal. Here we have used sodium dodecyl sulfate (SDS) to act as a template for the low temperature synthesis of cobalt oxide (Co3O4) nanostructures. The use of SDS has led to tune the morphology, and the product was in the form of “cotton-like” nanostructures instead of connected nanowires. Moreover, the variation of the amount of the SDS used was found to affect the charge transfer process in the Co3O4. Using Co3O4 synthesized using the SDS for sensing of cholesterol was investigated. The use of the Co3O4 synthesized using the SDS was found to yield an improved cholesterol biosensor compared to Co3O4 synthesized without the SDS. The improvement of the cholesterol sensing properties upon using the SDS as a template was manifested in increasing the sensitivity and the dynamic range of detection. The results achieved in this study indicate the potential of using template assisted synthesis of nanomaterials in improving some properties, e.g., cholesterol sensing. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

28 pages, 1189 KB  
Review
Metal Oxide Nanosensors Using Polymeric Membranes, Enzymes and Antibody Receptors as Ion and Molecular Recognition Elements
by Magnus Willander, Kimleang Khun and Zafar Hussain Ibupoto
Sensors 2014, 14(5), 8605-8632; https://doi.org/10.3390/s140508605 - 16 May 2014
Cited by 30 | Viewed by 8722
Abstract
The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. [...] Read more.
The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices. Full article
(This article belongs to the Special Issue Biomimetic Receptors and Sensors)
Show Figures

Graphical abstract

11 pages, 539 KB  
Article
Synthesis of Three Dimensional Nickel Cobalt Oxide Nanoneedles on Nickel Foam, Their Characterization and Glucose Sensing Application
by Mushtaque Hussain, Zafar Hussain Ibupoto, Mazhar Ali Abbasi, Xianjie Liu, Omer Nur and Magnus Willander
Sensors 2014, 14(3), 5415-5425; https://doi.org/10.3390/s140305415 - 18 Mar 2014
Cited by 58 | Viewed by 11774
Abstract
In the present work, NiCo2O4 nanostructures are fabricated in three dimensions (3D) on nickel foam by the hydrothermal method. The nanomaterial was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The nanostructures exhibit nanoneedle-like [...] Read more.
In the present work, NiCo2O4 nanostructures are fabricated in three dimensions (3D) on nickel foam by the hydrothermal method. The nanomaterial was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The nanostructures exhibit nanoneedle-like morphology grown in 3D with good crystalline quality. The nanomaterial is composed of nickel, cobalt and oxygen atoms. By using the favorable porosity of the nanomaterial and the substrate itself, a sensitive glucose sensor is proposed by immobilizing glucose oxidase. The presented glucose sensor has shown linear response over a wide range of glucose concentrations from 0.005 mM to 15 mM with a sensitivity of 91.34 mV/decade and a fast response time of less than 10 s. The NiCo2O4 nanostructures-based glucose sensor has shown excellent reproducibility, repeatability and stability. The sensor showed negligible response to the normal concentrations of common interferents with glucose sensing, including uric acid, dopamine and ascorbic acid. All these favorable advantages of the fabricated glucose sensor suggest that it may have high potential for the determination of glucose in biological samples, food and other related areas. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

11 pages, 482 KB  
Article
Incorporating β-Cyclodextrin with ZnO Nanorods: A Potentiometric Strategy for Selectivity and Detection of Dopamine
by Sami Elhag, Zafar Hussain Ibupoto, Omer Nur and Magnus Willander
Sensors 2014, 14(1), 1654-1664; https://doi.org/10.3390/s140101654 - 17 Jan 2014
Cited by 21 | Viewed by 7997
Abstract
We describe a chemical sensor based on a simple synthesis of zinc oxide nanorods (ZNRs) for the detection of dopamine molecules by a potentiometric approach. The polar nature of dopamine leads to a change of surface charges on the ZNR surface via metal [...] Read more.
We describe a chemical sensor based on a simple synthesis of zinc oxide nanorods (ZNRs) for the detection of dopamine molecules by a potentiometric approach. The polar nature of dopamine leads to a change of surface charges on the ZNR surface via metal ligand bond formation which results in a measurable electrical signal. ZNRs were grown on a gold-coated glass substrate by a low temperature aqueous chemical growth (ACG) method. Polymeric membranes incorporating β-cyclodextrin (β-CD) and potassium tetrakis (4-chlorophenyl) borate was immobilized on the ZNR surface. The fabricated electrodes were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The grown ZNRs were well aligned and exhibited good crystal quality. The present sensor system displays a stable potential response for the detection of dopamine in 10−2 mol·L−1 acetic acid/sodium acetate buffer solution at pH 5.45 within a wide concentration range of 1 × 10−6 M–1 × 10−1 M, with sensitivity of 49 mV/decade. The electrode shows a good response time (less than 10 s) and excellent repeatability. This finding can contribute to routine analysis in laboratories studying the neuropharmacology of catecholamines. Moreover, the metal-ligand bonds can be further exploited to detect DA receptors, and for bio-imaging applications. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

11 pages, 479 KB  
Article
Decoration of ZnO Nanorods with Coral Reefs like NiO Nanostructures by the Hydrothermal Growth Method and Their Luminescence Study
by Mazhar Ali Abbasi, Zafar Hussain Ibupoto, Mushtaque Hussain, Galia Pozina, Jun Lu, Lars Hultman, Omer Nur and Magnus Willander
Materials 2014, 7(1), 430-440; https://doi.org/10.3390/ma7010430 - 15 Jan 2014
Cited by 17 | Viewed by 9022
Abstract
Composite nanostructures of coral reefs like p-type NiO/n-type ZnO were synthesized on fluorine-doped tin oxide glass substrates by hydrothermal growth. Structural characterization was performed by field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction techniques. This investigation shows that the [...] Read more.
Composite nanostructures of coral reefs like p-type NiO/n-type ZnO were synthesized on fluorine-doped tin oxide glass substrates by hydrothermal growth. Structural characterization was performed by field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction techniques. This investigation shows that the adopted synthesis leads to high crystalline quality nanostructures. The morphological study shows that the coral reefs like nanostructures are densely packed on the ZnO nanorods. Cathodoluminescence (CL) spectra for the synthesized composite nanostructures are dominated mainly by a broad interstitial defect related luminescence centered at ~630 nm. Spatially resolved CL images reveal that the luminescence of the decorated ZnO nanostructures is enhanced by the presence of the NiO. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

11 pages, 493 KB  
Article
An InN/InGaN Quantum Dot Electrochemical Biosensor for Clinical Diagnosis
by Naveed Ul Hassan Alvi, Victor J. Gómez, Paul E.D. Soto Rodriguez, Praveen Kumar, Saima Zaman, Magnus Willander and Richard Nötzel
Sensors 2013, 13(10), 13917-13927; https://doi.org/10.3390/s131013917 - 15 Oct 2013
Cited by 29 | Viewed by 8889
Abstract
Low-dimensional InN/InGaN quantum dots (QDs) are demonstrated for realizing highly sensitive and efficient potentiometric biosensors owing to their unique electronic properties. The InN QDs are biochemically functionalized. The fabricated biosensor exhibits high sensitivity of 97 mV/decade with fast output response within two seconds [...] Read more.
Low-dimensional InN/InGaN quantum dots (QDs) are demonstrated for realizing highly sensitive and efficient potentiometric biosensors owing to their unique electronic properties. The InN QDs are biochemically functionalized. The fabricated biosensor exhibits high sensitivity of 97 mV/decade with fast output response within two seconds for the detection of cholesterol in the logarithmic concentration range of 1 × 10−6 M to 1 × 10−3 M. The selectivity and reusability of the biosensor are excellent and it shows negligible response to common interferents such as uric acid and ascorbic acid. We also compare the biosensing properties of the InN QDs with those of an InN thin film having the same surface properties, i.e., high density of surface donor states, but different morphology and electronic properties. The sensitivity of the InN QDs-based biosensor is twice that of the InN thin film-based biosensor, the EMF is three times larger, and the response time is five times shorter. A bare InGaN layer does not produce a stable response. Hence, the superior biosensing properties of the InN QDs are governed by their unique surface properties together with the zero-dimensional electronic properties. Altogether, the InN QDs-based biosensor reveals great potential for clinical diagnosis applications. Full article
(This article belongs to the Special Issue State-of-the-Art Sensors Technology in Spain 2013)
Show Figures

14 pages, 744 KB  
Article
Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer
by Kimleang Khun, Zafar Hussain Ibupoto, Mohamad S. AlSalhi, Muhammad Atif, Anees A. Ansari and Magnus Willander
Materials 2013, 6(10), 4361-4374; https://doi.org/10.3390/ma6104361 - 30 Sep 2013
Cited by 59 | Viewed by 7738
Abstract
In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized [...] Read more.
In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices. Full article
Show Figures

Figure 1

8 pages, 535 KB  
Communication
Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires
by Zafar Hussain Ibupoto, Kimleang Khun, Xianjie Liu and Magnus Willander
Nanomaterials 2013, 3(3), 564-571; https://doi.org/10.3390/nano3030564 - 9 Sep 2013
Cited by 36 | Viewed by 10982
Abstract
Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission [...] Read more.
Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms. Full article
Show Figures

Figure 1

Back to TopTop