Molecular Signaling Events in Algae in Response to Abiotic Factors and Biotic Interactions

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Response to Abiotic Stress and Climate Change".

Deadline for manuscript submissions: 31 July 2024 | Viewed by 2431

Special Issue Editor


E-Mail Website
Guest Editor
Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, Germany
Interests: microalgae; algal-microbial interactions; circadian clocks; photoreceptors; temperature sensing

Special Issue Information

Dear Colleagues,

Algae, including microscopic microalgae and macroalgal kelps, are important for carbon dioxide fixation and are at the bottom of food webs. Their fitness depends on abiotic factors such as light, temperature and nutrients. In addition, interactions with other organisms strongly influence their growth rates in a positive or negative manner (e.g., mutualism, antagonism). In recent years, we gained knowledge about how biotic and abiotic factors are perceived by sophisticated algal receptors and the signaling cascade events that are initiated thereafter. For example, novel types of photoreceptors have been found in algae that are absent in land plants. Despite extensive studies on selected model algae under laboratory conditions, we are only starting to understand how algae react under natural conditions. This Special Issue of Plants aims to provide an overview of our current knowledge on molecular receptors, signaling components and pathways that are triggered once algae perceive information about abiotic factors or interact with other (micro-)organisms.

Prof. Dr. Maria Mittag
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • algal–microbial interactions
  • algal viruses
  • Ca2+ signaling
  • freshwater algae
  • light, nutrients
  • marine algae
  • photoreceptors
  • temperature
  • temperature sensing
  • terrestrial algae

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 1941 KiB  
Article
A Knockout of the Photoreceptor PtAureo1a Results in Altered Diel Expression of Diatom Clock Components
by Shvaita Madhuri, Bernard Lepetit, Alexander Helmut Fürst and Peter G. Kroth
Plants 2024, 13(11), 1465; https://doi.org/10.3390/plants13111465 (registering DOI) - 25 May 2024
Viewed by 175
Abstract
Plants and algae use light not only for driving photosynthesis but also to sense environmental cues and to adjust their circadian clocks via photoreceptors. Aureochromes are blue-light-dependent photoreceptors that also function as transcription factors, possessing both a LOV and a bZIP domain. Aureochromes [...] Read more.
Plants and algae use light not only for driving photosynthesis but also to sense environmental cues and to adjust their circadian clocks via photoreceptors. Aureochromes are blue-light-dependent photoreceptors that also function as transcription factors, possessing both a LOV and a bZIP domain. Aureochromes so far have only been detected in Stramenopile algae, which include the diatoms. Four paralogues of aureochromes have been identified in the pennate model diatom Phaeodactylum tricornutum: PtAureo1a, 1b, 1c, and 2. While it was shown recently that diatoms have a diel rhythm, the molecular mechanisms and components regulating it are still largely unknown. Diel gene expression analyses of wild-type P. tricornutum, a PtAureo1a knockout strain, and the respective PtAureo1 complemented line revealed that all four aureochromes have a different diel regulation and that PtAureo1a has a strong co-regulatory influence on its own transcription, as well as on that of other genes encoding different blue-light photoreceptors (CPF1, 2 and 4), proteins involved in photoprotection (Lhcx1), and specific bHLH transcription factors (RITMO1). Some of these genes completely lost their circadian expression in the PtAureo1a KO mutant. Our results suggest a major involvement of aureochromes in the molecular clock of diatoms. Full article
Show Figures

Figure 1

22 pages, 4327 KiB  
Article
Channels of Evolution: Unveiling Evolutionary Patterns in Diatom Ca2+ Signalling
by Eleanor A. Murphy, Friedrich H. Kleiner, Katherine E. Helliwell and Glen L. Wheeler
Plants 2024, 13(9), 1207; https://doi.org/10.3390/plants13091207 - 26 Apr 2024
Viewed by 686
Abstract
Diatoms are important primary producers in marine and freshwater environments, but little is known about the signalling mechanisms they use to detect changes in their environment. All eukaryotic organisms use Ca2+ signalling to perceive and respond to environmental stimuli, employing a range [...] Read more.
Diatoms are important primary producers in marine and freshwater environments, but little is known about the signalling mechanisms they use to detect changes in their environment. All eukaryotic organisms use Ca2+ signalling to perceive and respond to environmental stimuli, employing a range of Ca2+-permeable ion channels to facilitate the movement of Ca2+ across cellular membranes. We investigated the distribution of different families of Ca2+ channels in diatom genomes, with comparison to other members of the stramenopile lineage. The four-domain voltage-gated Ca2+ channels (Cav) are present in some centric diatoms but almost completely absent in pennate diatoms, whereas single-domain voltage-gated EukCatA channels were found in all diatoms. Glutamate receptors (GLRs) and pentameric ligand-gated ion channels (pLGICs) also appear to have been lost in several pennate species. Transient receptor potential (TRP) channels are present in all diatoms, but have not undergone the significant expansion seen in brown algae. All diatom species analysed lacked the mitochondrial uniporter (MCU), a highly conserved channel type found in many eukaryotes, including several stramenopile lineages. These results highlight the unique Ca2+-signalling toolkit of diatoms and indicate that evolutionary gains or losses of different Ca2+ channels may contribute to differences in cellular-signalling mechanisms between species. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

23 pages, 1712 KiB  
Review
Exchange or Eliminate: The Secrets of Algal-Bacterial Relationships
by Bertille Burgunter-Delamare, Prateek Shetty, Trang Vuong and Maria Mittag
Plants 2024, 13(6), 829; https://doi.org/10.3390/plants13060829 - 13 Mar 2024
Viewed by 1195
Abstract
Algae and bacteria have co-occurred and coevolved in common habitats for hundreds of millions of years, fostering specific associations and interactions such as mutualism or antagonism. These interactions are shaped through exchanges of primary and secondary metabolites provided by one of the partners. [...] Read more.
Algae and bacteria have co-occurred and coevolved in common habitats for hundreds of millions of years, fostering specific associations and interactions such as mutualism or antagonism. These interactions are shaped through exchanges of primary and secondary metabolites provided by one of the partners. Metabolites, such as N-sources or vitamins, can be beneficial to the partner and they may be assimilated through chemotaxis towards the partner producing these metabolites. Other metabolites, especially many natural products synthesized by bacteria, can act as toxins and damage or kill the partner. For instance, the green microalga Chlamydomonas reinhardtii establishes a mutualistic partnership with a Methylobacterium, in stark contrast to its antagonistic relationship with the toxin producing Pseudomonas protegens. In other cases, as with a coccolithophore haptophyte alga and a Phaeobacter bacterium, the same alga and bacterium can even be subject to both processes, depending on the secreted bacterial and algal metabolites. Some bacteria also influence algal morphology by producing specific metabolites and micronutrients, as is observed in some macroalgae. This review focuses on algal-bacterial interactions with micro- and macroalgal models from marine, freshwater, and terrestrial environments and summarizes the advances in the field. It also highlights the effects of temperature on these interactions as it is presently known. Full article
Show Figures

Figure 1

Back to TopTop