Geology, Geochemistry, Genesis, Modeling, Structure and Exploration of Copper Polymetallic Deposits

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Deposits".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 6786

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
Interests: copper polymetallic deposits and their mineralization; ore genesis; field structure; mineral prospecting and exploration

E-Mail Website
Guest Editor
College of Earth Science, Chengdu University of Technology, Chengdu 610225, China
Interests: porphyry deposits; geochemistry; petrology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
Interests: mineral deposit; geochemistry of deposit; mineral prospecting and exploration

E-Mail Website
Guest Editor
School of Earth Science, Yunnan University, Kunming 650500, China
Interests: geochronology; geochemistry; mineral exploration

Special Issue Information

Dear Colleagues,

Copper is an important key metal mineral resource and an indispensable raw material in construction. Copper deposits are widely distributed within the major metallogenic zones in the world, and there are many genetic types of deposits, such as porphyry, skarn, VMS, and IOCG. Among these, porphyry and skarn Cu deposits constitute major copper resources in some countries. In recent years, great research achievements have been made in metallogenic chronology, genetic typing, metallogenic mechanisms and modeling, ore-controlling structural systems, and the exploration of copper polymetallic deposits. This Special Issue seeks to report recent advances in the geology, geochronology, mineralogy, geochemistry, field structure, and prospecting prediction of Cu polymetallic deposits. New analytical methods and experimental studies are also welcome. It will present studies from the regional to mineral scale, using advanced analytical techniques developed in recent years, to provide a comprehensive understanding of Cu polymetallic deposits and their associated critical metals and mineral exploration.

Prof. Dr. Bo Li
Prof. Dr. Xinghai Lang
Dr. Zhongfa Liu
Dr. Xinfu Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • copper polymetallic deposits
  • geology and geochemistry
  • fluid inclusion and ore-forming fluid
  • metallogenic age
  • ore genesis and metallogenic mechanism
  • metallogenic model
  • ore field structural system
  • exploration and prospecting prediction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 13494 KiB  
Article
Geology and Geochemistry of the Hongnipo Copper Deposit, Southwest China
by Wangdong Yang, Gongwen Wang and Yunchou Xu
Minerals 2024, 14(9), 936; https://doi.org/10.3390/min14090936 - 13 Sep 2024
Viewed by 494
Abstract
The Hongnipo deposit, a newly discovered large copper deposit in the Kangdian Fe-Cu metallogenic belt of southwest China, is hosted in the Paleoproterozoic metavolcanic and metasedimentary rocks of the Hekou group. The deposit comprises five strata-bound ore bodies and is associated with sporadically [...] Read more.
The Hongnipo deposit, a newly discovered large copper deposit in the Kangdian Fe-Cu metallogenic belt of southwest China, is hosted in the Paleoproterozoic metavolcanic and metasedimentary rocks of the Hekou group. The deposit comprises five strata-bound ore bodies and is associated with sporadically distributed gabbroic intrusions. Four stages of mineralization and alteration have been identified: sodic alteration (I), banded sulfide (II), magnetite (III), and sulfide vein/stockwork (IV). Extensive sodic alteration of stage I is confirmed by the composition of feldspars. Trace element analysis of magnetite suggests a formation temperature of 400 ± 50 °C and has a characteristic of IOCG deposits, while high δ18O values (8.3–11.0‰) of fluids from stage III indicate a magmatic water origin. Sulfide δ34SVCDT values from stages II and IV range from −2.6 to 10.9‰ and −1.5 to 9.9‰, respectively, suggesting a mixed sulfur source from magmatic H2S and reduced seawater sulfate. Chalcopyrite from Hongnipo shows a narrow δ65Cu range of −0.135 to 0.587‰, indicating formation at high temperatures. The lack of correlation between δ65Cu and δ34SVCDT values suggests distinct geochemical behaviors in mineralization. In summary, the Hongnipo deposit is classified as a Cu-rich section of a typical IOCG deposit. Full article
Show Figures

Figure 1

19 pages, 19626 KiB  
Article
The Fluid Evolution in the Skarn Stages of the Baoshan Skarn Cu-Polymetallic Deposit, South China
by Ping Zheng, Ke Chen, Jun-Ke Zhang, Zhong-Fa Liu, Yong-Shun Li and Ming-Peng He
Minerals 2024, 14(9), 907; https://doi.org/10.3390/min14090907 - 5 Sep 2024
Viewed by 514
Abstract
Baoshan is a world-class skarn Cu-polymetallic deposit located at the junction of the Nanling and Qin-Hang metallogenic belts in China. While there has been extensive research on the mineralogy and geochemistry of skarn deposits, studies on the fluid characteristics and evolutionary history from [...] Read more.
Baoshan is a world-class skarn Cu-polymetallic deposit located at the junction of the Nanling and Qin-Hang metallogenic belts in China. While there has been extensive research on the mineralogy and geochemistry of skarn deposits, studies on the fluid characteristics and evolutionary history from the early to late skarn stages in such deposits are still limited. In this study, we analyzed garnet and pyroxene from the early skarn stage and scheelite from the late skarn stage of the Baoshan deposit. We distinguished two generations of garnet (Grt1 and Grt2), one generation of pyroxene, and three generations of scheelite (Sch I, Sch II, and Sch III) on the basis of mineral assemblages and microscopic characteristics. Grt1 appears coarse-grained, and Grt2 cuts through Grt1 as veinlets. In Grt1, the andradite end-member increases from the core to the rim, while the grossular portion decreases (Ad35–36Gr59–61Sp3–4 to Ad59–61Gr36–37Sp2–3), and in Grt2, the andradite end-member significantly increases (Ad41–73Gr25–55Sp2–3). Grt1 and Grt2 have similar trace element compositions, with enrichment in Zr and depletion in Nb and Hf, depletion in LREE, enrichment in HREE, and weak negative Eu anomalies. Pyroxene coexists with Grt1 and is similarly cut by Grt2, with its composition mainly being diopside (Di82–99Hd0.6–15Jo0–3.2). Sch I and Sch II appear as anhedral to subhedral grains, while Sch III is predominantly found in veinlets. In Sch I and Sch II, most REEs enter the scheelite lattice via the Na-REE coupled substitution mechanism, with a smaller portion substituting Ca vacancies. In Sch III, the substitution mechanism involving Ca site vacancies may dominate. During the early skarn stage, the oxygen fugacity of the fluid gradually decreased from Grt1 and pyroxene to Grt2. In the late skarn stage, fluid oxygen fugacity remains stable from Sch I and Sch II to Sch III in shallow parts but significantly decreases in deeper parts. The garnet and pyroxene from the Baoshan deposit align with typical skarn Cu deposit compositions, while scheelite in the late skarn stage shows Sch I, Sch II, and shallow Sch III as skarn-type and deep Sch III as vein-type scheelite. Early skarn stage fluids were weakly acidic. Sch I, Sch II, and Sch III originated from fluids related to the Baoshan granite porphyry, with Sch III also showing evidence of water–rock interaction. This study reconstructed the fluid evolution history from the early to late skarn stages at the Baoshan deposit, providing insights into the ore-forming processes of other skarn deposits. Full article
Show Figures

Figure 1

22 pages, 8347 KiB  
Article
Geochronology, Geochemistry, and In Situ Sr-Nd-Hf Isotopic Compositions of a Tourmaline-Bearing Leucogranite in Eastern Tethyan Himalaya: Implications for Tectonic Setting and Rare Metal Mineralization
by Yangchen Drolma, Kaijun Li, Yubin Li, Jinshu Zhang, Chengye Yang, Gen Zhang, Ruoming Li and Duo Liu
Minerals 2024, 14(8), 755; https://doi.org/10.3390/min14080755 - 26 Jul 2024
Viewed by 654
Abstract
Himalayan leucogranite is an excellent target for understanding the orogenic process of the India–Asia collision, but its origin and tectonic significance are still under debate. An integrated study of geochronology, geochemistry, and in situ Sr-Nd-Hf isotopes was conducted for a tourmaline-bearing leucogranite in [...] Read more.
Himalayan leucogranite is an excellent target for understanding the orogenic process of the India–Asia collision, but its origin and tectonic significance are still under debate. An integrated study of geochronology, geochemistry, and in situ Sr-Nd-Hf isotopes was conducted for a tourmaline-bearing leucogranite in the eastern Tethyan Himalaya using LA-ICP-MS, X-ray fluorescence spectroscopy, and ICP-MS and LA-MC-ICP-MS, respectively. LA-ICP-MS U-Pb dating of zircon and monazite showed that it was emplaced at ~19 Ma. The leucogranite had high SiO2 and Al2O3 contents ranging from 73.16 to 73.99 wt.% and 15.05 to 15.24 wt.%, respectively. It was characterized by a high aluminum saturation index (1.14–1.19) and Rb/Sr ratio (3.58–6.35), which is characteristic of S-type granite. The leucogranite was enriched in light rare-earth elements (LREEs; e.g., La and Ce) and large ion lithophile elements (LILEs; e.g., Rb, K, and Pb) and depleted in heavy rare-earth elements (e.g., Tm, Yb, and Lu) and high field strength elements (HFSEs; e.g., Nb, Zr, and Ti). It was characterized by high I Sr (t) (0.7268–0.7281) and low ε Nd (t) (−14.6 to −13.2) and ε Hf (t) (−12.6 to −9.47), which was consistent with the isotopic characteristics of the Higher Himalayan Sequence. Petrogenetically, the origin of the leucogranite is best explained by the decompression-induced muscovite dehydration melting of an ancient metapelitic source within the Higher Himalayan Sequence during regional extension due to the movement of the South Tibetan Detachment System (STDS). The significantly high lithium and beryllium contents of the leucogranite and associated pegmatite suggest that Himalayan leucogranites possess huge potential for lithium and beryllium exploration. Full article
Show Figures

Figure 1

21 pages, 11761 KiB  
Article
Study on the Hydrothermal Superposition Period: Mineralization–Alteration Zoning Model and Zoning Mechanism of the Dahongshan Fe-Cu Deposit in Yunnan Province
by Xing Mao, Runsheng Han, Dong Zhao, Liuqing Meng, Wenlong Qiu, Hongsheng Gong, Long Sun, Xuhao Kang and Yinkang Zhou
Minerals 2024, 14(1), 96; https://doi.org/10.3390/min14010096 - 15 Jan 2024
Viewed by 1284
Abstract
The Dahongshan large-scale iron (Fe)–copper (Cu) polymetallic deposit is in the Proterozoic metallogenic domain on the western margin of the Yangtze Block. It is a typical representative of Fe-Cu polymetallic composite mineralization in the Kangdian area. The deposit comprises a group of layered [...] Read more.
The Dahongshan large-scale iron (Fe)–copper (Cu) polymetallic deposit is in the Proterozoic metallogenic domain on the western margin of the Yangtze Block. It is a typical representative of Fe-Cu polymetallic composite mineralization in the Kangdian area. The deposit comprises a group of layered orebodies formed by volcanic exhalation sedimentation and metamorphism, and a group of vein-like orebodies formed by hydrothermal superposition. The large-scale mapping of altered lithofacies in the deposit has resolved issues of weak links and unclear mineralization and alteration zoning of hydrothermal superimposed deposits within the study area. The mineralization type, hydrothermal alteration type and intensity, mineral assemblage, and mineral structure of the vein-type Cu polymetallic deposits during the hydrothermal superposition period are meticulously analyzed and studied. Finally, the zoning relationships of vein orebodies (mineralization) are summarized. On the basis of the results of the study of the distribution pattern of this mineral body, a mineralization alteration zoning model of the hydrothermal superposition period is constructed. The results show that the alteration is primarily silicification, carbonation, and chloritization, and the mineralization is chalcopyrite, bornite, chalcocite, and pyrite. The Dibadu anticline and the cutting layer faults and fractures strictly control the hydrothermal alteration zoning. The mineralization alteration zoning from the core to the flank is divided into coarse vein zone (I) → stockwork zone (II) → veinlet zone (III). The corresponding mineral assemblages are quartz–calcite–chalcocite–bornite–(native copper) (I) → calcite–dolomite–quartz–bornite–chalcopyrite–chlorite (II) → dolomite–quartz–chalcopyrite–(pyrite) (III), where the stockwork zone has the most substantial mineralization. The mineral assemblages of each alteration zone, the characteristics of rare earth elements of typical samples, and the test results on the fluid inclusions confirm that pH and Eh primarily control the zoning mechanism. This study has significance for deepening the understanding of the composite metallogenic system, guiding deep and peripheral prospecting, and providing significant enlightenment for the study of this type of deposit. Full article
Show Figures

Figure 1

20 pages, 30881 KiB  
Article
Petrogenesis of the Eocene Highly Fractionated Granite Porphyry with REE Tetrad Effect: An Example from Western Yunnan, Southeastern Tibetan Plateau
by Hang Yang, Peng Wu, Anlin Liu and Feng Wang
Minerals 2023, 13(11), 1390; https://doi.org/10.3390/min13111390 - 30 Oct 2023
Cited by 1 | Viewed by 1470
Abstract
Highly fractionated granites are widely distributed in the crust and provide unique windows into magmatic evolution. This study reports petrography, zircon U–Pb ages, trace elemental, and Hf isotopic, as well as whole-rock elemental and Nd isotopic data of highly fractionated granite porphyries from [...] Read more.
Highly fractionated granites are widely distributed in the crust and provide unique windows into magmatic evolution. This study reports petrography, zircon U–Pb ages, trace elemental, and Hf isotopic, as well as whole-rock elemental and Nd isotopic data of highly fractionated granite porphyries from the Shiguanshan area in western Yunnan, southeastern Tibet. The granite porphyries were formed at 34.0 ± 0.3 Ma in a post-collisional setting. They are strongly peraluminous (A/CNK = 1.95–2.80), have high SiO2 content (SiO2 = 78.16–79.13 wt.%) and zircon saturation temperatures (803–829 °C, average 819 °C), and low MgO, with pronounced enrichment in Pb, U, Th, and Rb, and depletion in Ti, Eu, P, Sr, and Ba, and belong to highly fractionated A-type granites. These rocks define linear trends on Harker diagrams and display similar enriched whole-rock Nd isotopic (εNd(t) = −12.8 to −12.3) and zircon Hf isotopic (εHf(t) = −10.4 to −8.8) compositions compared to the published data of coeval mantle-derived syenite porphyries, which can be attributed to fractional crystallization processes. A quantitative model suggests that the Shiguanshan granite porphyries likely formed through the fractionation process of a mineral assemblage consisting of plagioclase, K-feldspar, biotite, and amphibole (in a ratio of 40:30:25:5), with fractionation degrees of 50%–55%. The magmatic textures and zircons, decoupling between the REE tetrad effect and fractionation of twin-elements, along with the modeling result of Rayleigh fractionation, suggest that the REE tetrad effect in the Shiguanshan granite porphyries may be caused by fractionation of accessory minerals. Our data, along with regional observations, propose that the generation of these granite porphyries is possibly related to lithospheric removal following the Indo–Asia collision. Full article
Show Figures

Figure 1

21 pages, 12703 KiB  
Article
Metallogenic Model for Pb-Zn Deposits in Clastic Rocks of the Dahai Mining Area, Northeast Yunnan: Evidence from H-O-S-Sr-Pb Isotopes
by Hongsheng Gong, Runsheng Han, Peng Wu, Gang Chen and Ling Ma
Minerals 2023, 13(10), 1343; https://doi.org/10.3390/min13101343 - 20 Oct 2023
Viewed by 1286
Abstract
The Dahai Pb-Zn mining area is located in the northwestern Pb-Zn district in northeastern Yunnan Province in the Sichuan-Yunnan-Guizhou Pb-Zn metallogenic triangle (SYGT), east of the Xiaojiang fault. Numerous Pb-Zn deposits (spots) occur in clastic rocks in this area. In this study, the [...] Read more.
The Dahai Pb-Zn mining area is located in the northwestern Pb-Zn district in northeastern Yunnan Province in the Sichuan-Yunnan-Guizhou Pb-Zn metallogenic triangle (SYGT), east of the Xiaojiang fault. Numerous Pb-Zn deposits (spots) occur in clastic rocks in this area. In this study, the Maliping, Laoyingqing, and Jinniuchang Pb-Zn deposits, representative clastic rocks in the Dahai mining area, were selected as research objects. The results of H-O-S-Sr-Pb isotope analyses show that the three deposits mainly formed through the mixing of a basinal brine with a hydrothermal fluid derived from deep within the underlying (deformed) basement, and brines leached organic matter from wall rocks. The δ34S values range from −2.62–30.30‰. The S isotope results show two different sources of reduced S: one in the Laoyingqing deposit derived from the S reduction generated by the pyrolysis of sulfur-bearing organic matter in the carbonaceous slate of the Kunyang Group, and the second in the Maliping and Jinniuchang deposits derived from the S reduction generated by the thermochemical sulfur reduction (TSR) of seawater sulfate in the Lower Cambrian Yuhucun Formation and Sinian Dengying Formation. The Pb isotope results show that the Pb sources of the three deposits are derived from basement rocks (Kunyang Group) with a small portion derived from Devonian–Permian carbonate rocks and Dengying Formation dolomite, both of which have undergone homogenization during mineralization. The Sr content varied from 0.09629 to 0.2523 × 10−6, and the study shows that the main source of Sr is a mixture of ore-forming fluid flowing through basement rocks (Kunyang Group) and through sedimentary cover. However, most of the Sr in the Maliping deposit is derived from marine carbonate, and in the Laoyingqing deposit, it is provided by basement rocks (Kunyang Group). Based on a comparative study of the deposits, the Pb-Zn deposits in the clastic rocks of the Dahai mining area and the SYGT belong to the same metallogenic system and were formed under the same metallogenic geological background. Finally, a unified metallogenic model of the two types of fluid migration and mixed mineralization of the Pb-Zn deposit in clastic rocks of the Dahai mining area is proposed. The metallogenic model provides a basis for the study of the Pb-Zn metallogenic system and guidance for deep and peripheral prospecting in this area. Full article
Show Figures

Figure 1

Back to TopTop