materials-logo

Journal Browser

Journal Browser

Recycling and Development of New Building Materials or Products (Second Volume)

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Construction and Building Materials".

Deadline for manuscript submissions: 20 August 2024 | Viewed by 3580

Special Issue Editor


E-Mail Website
Guest Editor
Chair, Structural Engineering Division, Department of Civil Engineering, Ariel University, Ariel 40700, Israel
Interests: testing and analysis of reinforced concrete structures and elements; high-strength concrete; steel fiber reinforced concrete; two-layer bending elements; earthquake engineering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Modern design techniques and construction technologies are based on effective materials and structures that allow the efficient use of natural resources and reuse of waste products. Extensive research has been carried out in order to develop effective sustainable approaches that yield a balance between the construction industry and surrounding environment. It is obvious that new structures should correspond to human development, taking into account the ecological requirements. Therefore, one of the ways for achieving environmentally friendly construction is reusing waste products. Proper approaches for reusing waste products in the construction industry should also consider suitable energy effective technologies.

Developing modern design methodologies, allowing the optimal use of natural resources and reusing waste products in the construction industry have high importance all over the world. 

The purpose of this call for papers is to exchange recent scientific achievements and novel ideas related to the reuse of various wastes as raw materials in the Special Issue entitled Recycling and Development of New Building Materials or Products (Second Volume)

Researchers are invited to share their knowledge on the design of effective ecologically friendly construction materials or products that can be used in construction.

Prof. Dr. Yuri Ribakov
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • waste products
  • construction materials
  • design methodology
  • structural elements
  • sustainability

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 2631 KiB  
Article
Initial Characteristics of Alkali–Silica Reaction Products in Mortar Containing Low-Purity Calcined Clay
by Daria Jóźwiak-Niedźwiedzka, Roman Jaskulski, Kinga Dziedzic, Aneta Brachaczek and Dariusz M. Jarząbek
Materials 2024, 17(10), 2207; https://doi.org/10.3390/ma17102207 - 8 May 2024
Viewed by 366
Abstract
An alkali–silica reaction (ASR) is a chemical process that leads to the formation of an expansive gel, potentially causing durability issues in concrete structures. This article investigates the properties and behaviour of ASR products in mortar with the addition of low-purity calcined clay [...] Read more.
An alkali–silica reaction (ASR) is a chemical process that leads to the formation of an expansive gel, potentially causing durability issues in concrete structures. This article investigates the properties and behaviour of ASR products in mortar with the addition of low-purity calcined clay as an additional material. This study includes an evaluation of the expansion and microstructural characteristics of the mortar, as well as an analysis of the formation and behaviour of ASR products with different contents of calcined clay. Expansion tests of the mortar beam specimens were conducted according to ASTM C1567, and a detailed microscopic analysis of the reaction products was performed. Additionally, their mechanical properties were determined using nanoindentation. This study reveals that with an increasing calcined clay content, the amount of the crystalline form of the ASR gel decreases, while the nanohardness increases. The Young’s modulus of the amorphous ASR products ranged from 5 to 12 GPa, while the nanohardness ranged from 0.41 to 0.67 GPa. The obtained results contribute to a better understanding of how the incorporation of low-purity calcined clay influences the ASR in mortar, providing valuable insights into developing sustainable and durable building materials for the construction industry. Full article
Show Figures

Figure 1

13 pages, 1597 KiB  
Article
Investigation of the Cementing Efficiency of Fly Ash Activated by Microsilica in Low-Cement Concrete
by Leonid Dvorkin, Vadim Zhitkovsky, Svetlana Lapovskaya and Yuri Ribakov
Materials 2023, 16(21), 6859; https://doi.org/10.3390/ma16216859 - 25 Oct 2023
Viewed by 564
Abstract
This paper presents experimental results on the influence of concrete composition factors on the criterion characterizing the ratio between the compressive strength of activated low-cement concrete and clinker consumption. The investigation was carried out using mathematical planning of the experiments. Experimental and statistical [...] Read more.
This paper presents experimental results on the influence of concrete composition factors on the criterion characterizing the ratio between the compressive strength of activated low-cement concrete and clinker consumption. The investigation was carried out using mathematical planning of the experiments. Experimental and statistical models describing the influence of the fly ash, activating additive (microsilica), consumption of cement and aggregates, as well as the superplasticizer on the strength of low-cement concrete under normal hardening conditions and after steaming were obtained. The values of the clinker efficiency criterion and the mineral additive cementing efficiency coefficient were calculated, and models of these parameters were obtained for the investigated concrete compositions. It was shown that the activating effect of microsilica yields an increase in ash cementing efficiency and clinker efficiency criterion in concrete. Using the obtained models, an example for calculating the ash cementing efficiency coefficient is given. Full article
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 2951 KiB  
Review
Application of Steel Slag as an Aggregate in Concrete Production: A Review
by Zhengyi Ren and Dongsheng Li
Materials 2023, 16(17), 5841; https://doi.org/10.3390/ma16175841 - 25 Aug 2023
Cited by 4 | Viewed by 2295
Abstract
Steel slag is a solid waste produced in crude steel smelting, and a typical management option is stockpiling in slag disposal yards. Over the years, the massive production of steel slags and the continuous use of residue yards have led to vast occupation [...] Read more.
Steel slag is a solid waste produced in crude steel smelting, and a typical management option is stockpiling in slag disposal yards. Over the years, the massive production of steel slags and the continuous use of residue yards have led to vast occupation of land resources and caused severe environmental concerns. Steel slag particles can potentially be used as aggregates in concrete production. However, the volume stability of steel slag is poor, and the direct use of untreated steel slag aggregate (SSA) may cause cracking and spalling of concrete. The present research summarizes, analyzes, and compares the chemical, physical, and mechanical properties of steel slags. The mechanism and treatment methods of volume expansion are introduced, and the advantages, disadvantages, and applicable targets of these methods are discussed. Then, the latest research progress of steel slag aggregate concrete (SSAC) is reviewed. Using SSA leads to an increase in the density of concrete and a decrease in workability, but the mechanical properties and durability of SSAC are superior to natural aggregate concrete (NAC). Finally, future research in this field is proposed to motivate further studies and guide decision-making. Full article
Show Figures

Figure 1

Back to TopTop