Special Issue "Tsunami Science and Engineering II"

Special Issue Editor

Guest Editor
Dr. Valentin Heller

Department of Civil Engineering, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
Website | E-Mail
Phone: +44 (0)11 574 860 49
Interests: landslide-tsunamis (impulse waves); experimental and computational fluid dynamics; coastal engineering; wave and tidal energy conversion; fluid-structure interaction; scale effects

Special Issue Information

Dear Colleagues,

Earthquake-tsunamis, including the 2004 Indian Ocean Tsunami, with over 230,000 casualties, and the 2011 Tōhoku Tsunami in Japan, with over 18,400 people missing or dead, serve as tragic reminders that such waves pose a major natural hazard to human beings. Landslide-tsunamis, including the 1958 Lituya Bay case, may exceed 150 m in height and, if similar waves are generated in lakes or reservoirs (so-called impulse waves), then they may overtop dams and cause significant devastation downstream, such as in the 1963 Vaiont case with around 2000 casualties.

The after-effects caused by such catastrophes are not limited to the region immediately impacted by the wave; for example, the 1963 Vaiont case affected hydropower plant planning and management globally, and the 2011 Tōhoku Tsunami initiated changes to nuclear power plant policies worldwide. Active prevention of the wave generation is extremely unlikely and limited to rare cases where creeping slides were stabilized. Scientists and engineers thus work mainly on passive methods to deal with tsunamis. Such methods include early warning systems, sea walls, reinforced infrastructure and the provision of adequate freeboards of dam reservoirs. The latter methods require detailed knowledge of: (i) wave features as a function of the generation mechanism; (ii) wave propagation; (iii) the shoreline run-up; and (iv) wave–structure interaction. Despite a significant increase in research activities after the 2004 Indian Ocean Tsunami, there is certainly scope for—and the necessity of—more research with the aim to reduce the destruction caused by tsunamis to us and our environment.

This Special Issue aims to repeat the success of “Tsunami Science and Engineering” where 12 articles of the 21 full length submissions were published between 2014 and early 2016, after a rigorous peer-review process. Within a relatively short period, these articles were cited four times on average, up to 4.4 thousand times accessed, and released as a Printed Edition. This relaunch “Tsunami Science and Engineering II” aims to reflect our current understanding of tsunamis and tsunami mitigation, irrespective of the mechanism by which they are generated: earthquakes, landslides, underwater slumps, asteroids, etc. We welcome research papers, reviews (state of the art) and case studies addressing tsunamis and/or impulse waves theoretically, experimentally, numerically and/or based on field studies. I sincerely look forward to receiving your original and exciting contributions.

Dr. Valentin Heller
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Marine Science and Engineering is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 350 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


  • Earthquake-tsunamis
  • Landslide-generated impulse waves
  • Landslide-tsunamis
  • Long wave run-up
  • Seismic tsunamis
  • Tsunami early warning system
  • Tsunami forecasting
  • Tsunami hazard assessment and mitigation
  • Tsunami-induced overland flow
  • Tsunami loading on structures

Published Papers

This special issue is now open for submission, see below for planned papers.

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

1. Landslide-tsunami hazard from Es Vedrà, offshore Ibiza

Tan, H.; Ruffini, G.; Heller, V. and Chen, S.H.

Abstract: This study numerically investigates hypothetical landslides from the island Es Vedrà, offshore Ibiza, and the associated landslide-tsunami hazard at (i) Cala d’Hort Beach on Ibiza (3 km away) and (ii) Marina de Formentera (23 km away). Although currently no evidence suggests that Es Vedrà may become unstable, this study illustrates the techniques required for efficient landslide-tsunami hazard assessments involving water bodies such as reservoirs, lakes, fjords and the sea. The violent wave generation process is modelled with the meshless Lagrangian method Smoothed Particle Hydrodynamics. Further offshore the simulations are continued with the less computational expensive code SWASH, based on the non-hydrostatic non-linear Shallow Water Equations capable of considering frequency dispersion and bottom friction. The up to 110 m high tsunamis decay relatively fast with distance from Es Vedrà; the wave height offshore Cala d’Hort is circa 10 m reaching a large maximum run-up height, whilst the run-up heights at Formentera are significantly smaller. This study illustrates that landslide-tsunami hazard assessment can nowadays readily be conducted under consideration of site-specific details such as the bathymetry and topography. This work further intends to support future investigations of real landslide-tsunami cases.

Back to Top