Special Issue "Martian Meteorites"

A special issue of Geosciences (ISSN 2076-3263).

Deadline for manuscript submissions: closed (30 September 2017)

Special Issue Editor

Guest Editor
Dr. Elias Chatzitheodoridis

National Technical University of Athens, School of Mining and Metallurgical Engineering, Department of Geological Sciences, 9 Heroon Polytechneiou str., GR-15780 Zografou, Athens, Greece
Website | E-Mail
Interests: martian meteorites; alteration processes and minerals; astrobiology; biosignatures

Special Issue Information

Dear Colleagues,

Martian meteorites are a major source of information for understanding both primary and secondary geological and geochemical processes on the surface and subsurface of Mars. The planet is being investigated from an increasing number of orbiters and mobile landers with the primary goal to discover habitable environments, and ultimately extinct or extant forms of life. This requires the detailed study of both the surface and subsurface of the planet.

The International Society for Meteoritics and Planetary Science, in their Meteoritical Bulletin Database, currently lists 180 meteorites that are identified as Martian. If all of them truly originated from Mars, they already comprise a very extensive inventory of Martian samples. It is important to investigate the origin of these samples, the range of environments they cover, and their precise chronology. Their systematic and careful study should also be combined with in situ studies of the Martian surface. Martian meteorites will also be of paramount importance in aiding the selection of promising landing sites, troubleshooting current measurements on the surface of Mars, calibrating future Mars scientific payloads, and preparing future sample return missions.

State-of-the-art analytical instrumentation and advanced analytical methods and protocols are tested on Martian meteorites on Earth, enabling their study in an unprecedented detail. This is not yet possible with the instruments on-board the current Mars rovers. Mineralogical, geochemical, and textural observations clearly demonstrate secondary hydrous alteration on the planet, forming niche environments that could provide habitable sites in the sub-surface. Further research on Martian meteorites, such as the association of primary mineralogy with specific magmatic processes, the inventory of secondary minerals (i.e., clays, serpentine, carbonates, sulphates, halite), their relationship with Mars' hydrosphere and atmosphere, and their chronology will add to an already extensive database that will further unravel Mars' tantalizing history and its habitability.

Dr. Elias Chatzitheodoridis
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Geosciences is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 350 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Planet Mars
  • Martian meteorites
  • Chronology
  • Secondary minerals and processes
  • Textural, chemical, mineralogical Biosignatures
  • Habitability

Published Papers (1 paper)

View options order results:
result details:
Displaying articles 1-1
Export citation of selected articles as:

Research

Open AccessArticle Validity of the Apatite/Merrillite Relationship in Evaluating the Water Content in the Martian Mantle: Implications from Shergottite Northwest Africa (NWA) 2975
Geosciences 2017, 7(4), 99; doi:10.3390/geosciences7040099
Received: 17 July 2017 / Revised: 14 September 2017 / Accepted: 26 September 2017 / Published: 4 October 2017
PDF Full-text (27101 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Phosphates from the Martian shergottite NWA 2975 were used to obtain insights into the source and subsequence differentiation of the melt/melts. The crystallization of two generations of fluorapatite (F > Cl~OH and F-rich), chlorapatite and ferromerrillite-merrillite were reconstructed from TEM (Transmission Electron Microscopy)
[...] Read more.
Phosphates from the Martian shergottite NWA 2975 were used to obtain insights into the source and subsequence differentiation of the melt/melts. The crystallization of two generations of fluorapatite (F > Cl~OH and F-rich), chlorapatite and ferromerrillite-merrillite were reconstructed from TEM (Transmission Electron Microscopy) and geochemical analyses. The research results indicated that the recognized volatiles budget of the two generations of fluorapatite was related to their magmatic origin. The apatite crystals crystallized from an evolved magma during its final differentiation and degassing stage. In turn, chlorapatite replaced ferromerrillite-merrillite and was not related to, mantle-derived shergottite magma. The relationship between merrillite and apatite indicates that apatite is most probably a product of merrillite reacting with fluids. REE (rare earth elements) pattern of Cl-apatite might point to an origin associated with exogenous fluids mixed with fluids exsolved from evolved magma. The study shows that, among the three types of apatite, only the fluorapatite (F > Cl~OH) is a reliable source for assessing the degree of Martian mantle hydration. The occurrence of apatite with merrillite requires detailed recognition of their relationship. Consequently, the automatic use of apatite to assess the water content of the magma source can lead to false assumptions if the origin of the apatite is not precisely determined. Full article
(This article belongs to the Special Issue Martian Meteorites)
Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: Oxygen Isotope Thermometry of DaG 476 and SaU 008 Martian Meteorites: Implications for Their Origin
Authors: Arshad Ali 1, 2,* , Iffat Jabeen 2 and Sobhi J. Nasir 1
Affiliation: 1 Earth Sciences Research Centre (ESRC), Sultan Qaboos University (SQU), Al-Khodh, Muscat 123, Sultanate of Oman;
2 Department of Earth Sciences, Western University, 1151 Richmond Street N., London, ON, N6A 5B7 Canada
Abstract: We report the equilibration temperatures derived from the oxygen isotope thermometry of pyroxene-olivine pair from the DaG 476 (1220°C) and SaU 008 (1450°C) meteorites. Contrary to their geochemical and isotopic similarities, a temperature difference of 230°C between the two olivine-phyric shergottites provides insights into the Martian mantle magmatism. Based on our temperature estimation and previous magmatic models, we propose that SaU 008 could have originated from a deeper depleted mantle source. However, DaG 476 may have produced by the partial melting of the entrained pockets of the depleted mantle similar to that of the SaU 008’s source at relatively shallower depth. Both meteorites erupted as a relatively thick lava flow or a shallow intrusion at approximately the same time followed by a launch initiated by a single meteoritic impact at 1.1 Ma ago.
Keywords: Oxygen Isotopes, Thermometry, Martian Magmatism, DaG 476, SaU 008

Title: The hydrated silicate assemblages in the nakhlites
Author: Hitesh Changela
Abstract: This article summarises the state of knowledge on aqueous alteration in the nakhlites. The nakhlites are a unique sample-set of Mars; they are the only subgroup of martian meteorites sampling a depth profile on Mars that have been altered by aqueous fluids. The nakhlites are clinopyroxenites. The nakhlite pile currently consists of around a dozen meteorites. Secondary mineralogy in these martian surface samples mostly occurs in the form of hydrated silicate within olivine grains and/or nakhlite mesostases.
Previous insights into the nakhlite hydrated silicate assemblages convey evidence for a range of processes leading to their formation. These studies have provided a forensic account of the secondary assemblages. However, they outline contrasting formation mechanisms. A precise history of the interactions between the nakhlite lithology and aqueous fluids on Mars therefore remains enigmatic. Formation mechanisms of the nakhlite hydrated silicate assemblages range from the deposition of external siliceous fluid in olivine fractures, the dissolution of olivine and the subsequent precipitation of hydrated silicate to the isovolumentric direct replacement of olivine by hydrated silicate(s). Further microanalytical tests are required in order to constrain the precise for the aqueous history on the nakhlite parent body.
Constraints on the formation history could be made via the following tests: 1. correlative measurements between the morphological, structural, chemical and isotopic properties of the hydrated silicate zones in the host primary igneous minerals they occur in – mainly olivine phenocrysts.  

Back to Top