Zircon U-Pb Geochronology Applied to Tectonics and Ore Deposits

A special issue of Geosciences (ISSN 2076-3263).

Deadline for manuscript submissions: 31 May 2025 | Viewed by 963

Special Issue Editors


E-Mail Website
Guest Editor
School of Natural Sciences, CODES Centre of Ore Deposit and Earth Sciences, University of Tasmania, 208 Physics Building, Sandy Bay Campus, Hobart, TAS 7001, Australia
Interests: ore deposits; metallogeny; SE Asia; gemstones; fluid inclusions; zircon U–Pb
Special Issues, Collections and Topics in MDPI journals
School of Mineral Resources Engineering, Technical University of Crete, 73100 Chania, Greece
Interests: active tectonics; crustal deformation; GNSS analysis; seismotectonics; tectonic geomorphology; structural geology; geological mapping
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
CODES Centre for Ore Deposit and Earth Sciences, University of Tasmania, Private Bag 126, Hobart, TAS 7001, Australia
Interests: exploring geochemistry; geochemistry; geochronology; sedimentology; isotope geochemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue, titled "Zircon U-Pb Geochronology Applied to Tectonics and Ore Deposits", delves into the application of zircon U–Pb geochronology in the field of tectonics. Tectonics, the study of the Earth's crustal movements and deformation, plays a crucial role in understanding the formation and evolution of our planet's geological features. Zircon U–Pb dating techniques have emerged as a powerful tool in deciphering the timing and duration of various tectonic events, shedding light on the dynamic processes that have shaped Earth's surface.

This Special Issue presents a comprehensive collection of research articles that highlight the significance of zircon U–Pb geochronology in unraveling the mysteries of tectonic processes. The articles within this Special Issue explore the diverse applications of zircon U–Pb dating, including the determination of ages for magmatic events, metamorphic processes, and sedimentary deposition. By analyzing the isotopic composition of zircons, researchers can accurately date these geological events, providing valuable insights into the geological history of different regions.

The papers presented in this Special Issue aim to showcase the wide range of tectonic settings where zircon U–Pb geochronology has been applied, such as mountain building processes, plate tectonics, and crustal growth. The studies contained within this collection also emphasize the integration of zircon U–Pb dating with other analytical techniques, such as geochemistry and geophysics, to enhance our understanding of tectonic phenomena.

Prof. Dr. Khin Zaw
Dr. Ilias Lazos
Dr. Charles Makoundi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Geosciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • zircon U–Pb geochronology
  • tectonics
  • magmatic events
  • geological history
  • plate tectonics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 7689 KiB  
Article
Development of High-Silica Adakitic Intrusions in the Northern Appalachians of New Brunswick (Canada), and Their Correlation with Slab Break-Off: Insights into the Formation of Fertile Cu-Au-Mo Porphyry Systems
by Fazilat Yousefi, David R. Lentz, James A. Walker and Kathleen G. Thorne
Geosciences 2024, 14(9), 241; https://doi.org/10.3390/geosciences14090241 - 7 Sep 2024
Viewed by 498
Abstract
High-silica adakites exhibit specific compositions, as follows: SiO2 ≥ 56 wt.%, Al2O3 ≥ 15 wt.%, Y ≤ 18 ppm, Yb ≤ 1.9 ppm, K2O/Na2O ≥ 1, MgO < 3 wt.%, high Sr/Y (≥10), and La/Yb [...] Read more.
High-silica adakites exhibit specific compositions, as follows: SiO2 ≥ 56 wt.%, Al2O3 ≥ 15 wt.%, Y ≤ 18 ppm, Yb ≤ 1.9 ppm, K2O/Na2O ≥ 1, MgO < 3 wt.%, high Sr/Y (≥10), and La/Yb (>10). Devonian I-type adakitic granitoids in the northern Appalachians of New Brunswick (NB, Canada) share geochemical signatures of adakites elsewhere, i.e., SiO2 ≥ 66.46 wt.%, Al2O3 > 15.47 wt.%, Y ≤ 22 ppm, Yb ≤ 2 ppm, K2O/Na2O > 1, MgO < 3 wt.%, Sr/Y ≥ 33 to 50, and La/Yb > 10. Remarkably, adakitic intrusions in NB, including the Blue Mountain Granodiorite Suite, Nicholas Denys, Sugar Loaf, Squaw Cap, North Dungarvan River, Magaguadavic Granite, Hampstead Granite, Tower Hill, Watson Brook Granodiorite, Rivière-Verte Porphyry, Eagle Lake Granite, Evandale Granodiorite, North Pole Stream Suite, and the McKenzie Gulch porphyry dykes all have associated Cu mineralization, similar to the Middle Devonian Cu porphyry intrusions in Mines Gaspé, Québec. Trace element data support the connection between adakite formation and slab break-off, a mechanism influencing fertility and generation of porphyry Cu systems. These adakitic rocks in NB are oxidized, and are relatively enriched in large ion lithophile elements, like Cs, Rb, Ba, and Pb, and depleted in some high field strength elements, like Y, Nb, Ta, P, and Ti; they also have Sr/Y ≥ 33 to 50, Nb/Y > 0.4, Ta/Yb > 0.3, La/Yb > 10, Ta/Yb > 0.3, Sm/Yb > 2.5, Gd/Yb > 2.0, Nb + Y < 60 ppm, and Ta + Yb < 6 ppm. These geochemical indicators point to failure of a subducting oceanic slab (slab rollback to slab break-off) in the terminal stages of subduction, as the generator of post-collisional granitoid magmatism. The break-off and separation of a dense subducted oceanic plate segment leads to upwelling asthenosphere, heat advection, and selective partial melting of the descending oceanic slab (adakite) and (or) suprasubduction zone lithospheric mantle. The resulting silica-rich adakitic magmas ascend through thickened mantle lithosphere, with minimal affect from the asthenosphere. The critical roles of transpression and transtension are highlighted in facilitating the ascent and emplacement of these fertile adakitic magmas in postsubduction zone settings. Full article
(This article belongs to the Special Issue Zircon U-Pb Geochronology Applied to Tectonics and Ore Deposits)
Show Figures

Figure 1

Back to TopTop