Advanced Technology Related to Radar Signal, Imaging, and Radar Cross-Section Measurement, Volume II

A special issue of Electronics (ISSN 2079-9292). This special issue belongs to the section "Microwave and Wireless Communications".

Deadline for manuscript submissions: 15 September 2024 | Viewed by 2136

Special Issue Editors


E-Mail Website
Guest Editor
Department of Electronics and Information Systems Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
Interests: radar imaging; inverse synthetic aperture radar; electromagnetic modeling; radar cross-section theory and measurement; radar beam scanning; radar signal processing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

A radar system is made of many elemental and hard/software technologies. Recent applications are expanding to short-distance radar, such as security, nondestructive observation, and aerial monitoring, as well as long-distance radar, such as remote sensing, surveillance, and weather observation. In these various applications, the key technologies supporting radar are essentially the signal, image, and data processing in order to detect a target more explicitly, which includes synthetic aperture imaging, compressive sensing, multiple input multiple output (MIMO) processing, and radar beam scanning, in a broad sense. On the other hand, radar cross-section (RCS) evaluation and electromagnetic modeling technologies of radar targets are also important to develop future smart radar.

The aim of this Special Issue of Electronics is to present state-of-the-art investigations in various radar-important technologies for future applications. We invite researchers to contribute original and unique articles, as well as sophisticated review articles. Topics include, but are not limited to, the following areas:

  • Radar imaging technology.
  • Inverse synthetic aperture radar imaging.
  • Inverse electromagnetic scattering.
  • Short-distance radar.
  • Collision-avoidance radar.
  • Subsurface and ground penetrating radar.
  • Microwave remote sensing image analysis.
  • RCS near-field to far-field transformation.
  • Radar electromagnetic modeling and simulation.
  • Target recognition.
  • Radar data fusion.

Prof. Dr. Hirokazu Kobayashi
Prof. Dr. Toshifumi Moriyama
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Electronics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

 

Keywords

  • radar imaging technology
  • inverse synthetic aperture radar imaging
  • inverse electromagnetic scattering
  • short-distance radar
  • collision-avoidance radar
  • subsurface and ground penetrating radar
  • microwave remote sensing image analysis
  • RCS near-field to far-field transformation
  • radar electromagnetic modeling and simulation
  • target recognition
  • radar data fusion

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 5253 KiB  
Article
An Electronic Jamming Method Based on a Distributed Information Sharing Mechanism
by Pan Zhang, Yi Huang and Zhonghe Jin
Electronics 2023, 12(9), 2130; https://doi.org/10.3390/electronics12092130 - 6 May 2023
Cited by 1 | Viewed by 1649
Abstract
In an electronic jamming system, the ability to adequately perceive information determines the effectiveness of an electronic countermeasures strategy. This paper proposes a new method based on the combination of a multi-agent electronic jammer and an information sharing mechanism. With the development of [...] Read more.
In an electronic jamming system, the ability to adequately perceive information determines the effectiveness of an electronic countermeasures strategy. This paper proposes a new method based on the combination of a multi-agent electronic jammer and an information sharing mechanism. With the development of intelligent technology and deep learning, these technologies have been applied in electronic countermeasure game systems. Introducing intelligent technology into the electronic confrontation system can greatly improve decision-making efficiency. At the same time, a multi-agent electronic countermeasure cooperative system based on the information sharing method can break through the limited information perception capabilities of a single agent, thereby greatly improving the survivability of jamming systems in electronic warfare. Experimental results show that our method requires a lower jamming-to-signal ratio than the single jammer method to achieve effective electronic jamming. In addition, the electronic jamming parameters can be updated automatically as the external electromagnetic environment changes quickly, realizing a more intelligent electronic jamming system. Full article
Show Figures

Figure 1

Back to TopTop