Special Issue "Structural Design and Properties of Coordination Polymers"

A special issue of Crystals (ISSN 2073-4352). This special issue belongs to the section "Crystal Engineering".

Deadline for manuscript submissions: 20 November 2017

Special Issue Editor

Guest Editor
Dr. George E. Kostakis

Senior Lecturer in Physical/Inorganic Chemistry, Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
Website | E-Mail

Special Issue Information

Dear Celleagues,

The assembly of organic ligands and metal centres yields coordination polymers, many of which find applications in conductivity, catalysis, magnetism, gas sorption, biological sensing and luminescence. The structure and topology of coordination polymers may be manipulated by changing the reaction conditions, leading to a large variety of structurally and topologically unique products. However, controlling and predicting the final outcome of the self-assembly procedure remains one of the major challenges in the field. The final products are often strongly influenced by factors such as the behaviour of a functional group in a molecule, the influence of the crystallization conditions and the various conformations of the components within the crystal.

This Special Issue aims to cover a broad range of subjects in coordination polymer chemistry, which are important to the continued growth of the field, showcase current developments and realise its full potential in applications to address major societal challenges.

Therefore, we invite you to contribute a research article to this Special Issue and provide a clear snapshot of your research in this field.

Dr. George E. Kostakis
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Structural Design and Topological studies
  • Catalysis
  • Health and medical applications
  • Electronic and magnetic properties

Published Papers

This special issue is now open for submission, see below for planned papers.

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Abstract: Two new luminescent coordination polymers (CPs) have been synthesized by employing variable solvent mediated strategy adopted during solvothermal crystallization afforded two supramolecular isomers with phenanthroline-functionalized CdII aminoisophthalate namely [Cd (NH2-ipth(µ-O))(phen)]n (CP1) and [Cd(NH2-ipth)(phen)]n (CP2) (NH2-bdc=5-aminobenzenedicarboxylic acid, phen=1,10-phenanthroline).The CP1 and CP2 are further characterized by X-ray diffraction, thermo gravimetric analysis, IR spectroscopy, elemental analysis and UV-Vis spectra. Choice of two different solvent compositions during solvothermal synthesis result in the formation of two structurally diverse CPs wherein nitrogen of amino group played a prime role in structural diversification of CP1 and CP2 through variable coordination to CdII. Two dimensional (2D) CP1 with non-coordinating amino group crystallizes in Orthorhombic crystal system space group (P21 21 2) along with bridging of an oxygen of carboxylate between two CdII ions, while coordination of nitrogen of amino group to central CdII ions results in formation of two dimensional framework of CP2 which crystallizes in Triclinic (P-1) space group. The structures of CP1 and CP2 are 3D supramolecular network structures assembled by N-H…O and C-H…O hydrogen bonds along with stacking interaction and C-H… interactions. Moreover, the fluorescent phenanthroline introduced to the CP results in a distinguished photoluminescence signature. The influence of the structural diversity of CP’s on their photo-luminescent properties is investigated and discussed in detail.

Keywords: Isomeric CP; solvothermal synthesis, supramolecular isomers, photoluminescence

Journal Contact

MDPI AG
Crystals Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
E-Mail: 
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Special Issue Edit a special issue Review for Crystals
logo
loading...
Back to Top