Biological Control in Agroecosystems

A special issue of Biology (ISSN 2079-7737). This special issue belongs to the section "Ecology".

Deadline for manuscript submissions: closed (5 February 2022) | Viewed by 18872

Special Issue Editors


E-Mail Website
Guest Editor
Rutgers State University New Brunswick, New Brunswick, NJ 08901, USA
Interests: integrated pest management; biological control; tri-trophic interactions; chemical ecology
Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C5, Canada
Interests: biological control; invasive species; insect behavior

E-Mail Website
Guest Editor
Rutgers University, Chatsworth, NJ 08019, USA
Interests: biological control; invasive pests; insect behavior

Special Issue Information

Dear Colleagues,

The biological control of insect pests has appeared as a valuable tactic in integrated pest management (IPM) programs worldwide. Natural enemies including insect predators and mites, parasitoids, and entomopathogens have been used to manage insect pests in agro-ecosystems. Interest in biological control has increased in recent years due to stricter restrictions on insecticide use, the increased introduction of invasive species, and the loss of natural and semi-natural habitats as a consequence of agricultural intensification. Biological control efforts can be classified under three general approaches: importation, augmentation, and conservation of natural enemies. However, despite the long history of using natural enemies as biocontrol agents, challenges still exist to a wider adoption of biological control in IPM programs. The scope of this Special Issue is to highlight recent research on the biological control of insects, one of the major pest groups targeted by biological control in agro-ecosystems. We welcome original research articles and review articles focusing on new technologies, theoretical advancements, challenges, and successes in the study of the biological control of insect pests.

Dr. Cesar Rodriguez-Saona
Dr. Paul Abram
Dr. Pablo Urbaneja-Bernat
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Biological Control
  • Insects
  • Classical Biological Control
  • Augmentative Releases
  • Habitat Conservation

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 1110 KiB  
Article
Isolation, Identification, and Biocontrol Potential of Entomopathogenic Nematodes and Associated Bacteria against Virachola livia (Lepidoptera: Lycaenidae) and Ectomyelois ceratoniae (Lepidoptera: Pyralidae)
by Saqer S. Alotaibi, Hadeer Darwish, Madiha Zaynab, Sarah Alharthi, Akram Alghamdi, Amal Al-Barty, Mohd Asif, Rania H. Wahdan, Alaa Baazeem and Ahmed Noureldeen
Biology 2022, 11(2), 295; https://doi.org/10.3390/biology11020295 - 11 Feb 2022
Cited by 5 | Viewed by 2474
Abstract
Virachola livia (Lepidoptera: Lycaenidae) and Ectomyelois ceratoniae (Lepidoptera: Pyralidae) are the key pests of pomegranates in Saudi Arabia that are managed mainly using broad-spectrum pesticides. Interactions between the entomopathogenic nematodes (EPNs) Steinernematids, and Heterorhabditids, and their entomopathogenic bacterial symbionts (EPBs) have long been [...] Read more.
Virachola livia (Lepidoptera: Lycaenidae) and Ectomyelois ceratoniae (Lepidoptera: Pyralidae) are the key pests of pomegranates in Saudi Arabia that are managed mainly using broad-spectrum pesticides. Interactions between the entomopathogenic nematodes (EPNs) Steinernematids, and Heterorhabditids, and their entomopathogenic bacterial symbionts (EPBs) have long been considered monoxenic 2-partner associations responsible for killing insects and, therefore, are widely used in insect pest biocontrol. However, there are limited reports identifying such organisms in Taif, Saudi Arabia. The current study aimed to identify the EPNs and their associated bacteria isolated from Taif, Saudi Arabia, and evaluate their biocontrol potential on third instar larvae of V. livia and E. ceratoniae under laboratory conditions. A total of 35 EPN isolates belonging to Steinernema (20) and Heterorhabditis (15) were recovered from 320 soil samples. Twenty-six isolates of symbiotic or associated bacteria were isolated from EPNs and molecularly identified as Xenorhabdus (6 isolates), Photorhabdus (4 isolates), Pseudomonas (7), or Stenotrophomonas (9). A pathogenicity assay revealed that Steinernema spp. were more virulent than Heterorhabditis spp. against the two pomegranate insects, with LC50 values of 18.5 and 13.6 infective juveniles (IJs)/larva of V. livia for Steinernema spp. and 52 and 32.4 IJs/larva of V. livia for Heterorhabditis spp. at 48 and 72 h post-treatment, respectively. Moreover, LC50 values of 9 and 6.6 IJs/larva (Steinernema spp.) and 34.4 and 26.6 IJs/larva (Heterorhabditis spp.) were recorded for E. ceratoniae larvae at 48 and 72 h post-treatment. In addition, the EPB Stenotrophomonas maltophilia CQ1, isolated from Steinernema spp., surpassed Pseudomonas mosselii SJ10, associated with Heterorhabditis spp., in their ability to kill V. livia or E. ceratoniae larvae within 6 h post-application, resulting in 100% mortality in both insects after 24 and 48 h of exposure. We conclude that either application of EPNs’ IJs or their associated EPBs could serve as potential biocontrol agents for V. livia and E. ceratoniae. Full article
(This article belongs to the Special Issue Biological Control in Agroecosystems)
Show Figures

Figure 1

14 pages, 1573 KiB  
Article
Entomopathogenic Nematodes for the Management of Plum Curculio in Highbush Blueberry
by Ana Luiza Sousa, Cesar Rodriguez-Saona, Robert Holdcraft, Vera Kyryczenko-Roth and Albrecht M. Koppenhöfer
Biology 2022, 11(1), 45; https://doi.org/10.3390/biology11010045 - 29 Dec 2021
Viewed by 1587
Abstract
Conotrachelus nenuphar Herbst (Coleoptera: Curculionidae) is a key pest of stone and pome fruits in the United States. Application of certain entomopathogenic nematode (EPN) species has shown efficacy in some crops when targeting the larval stage of C. nenuphar in soil. To date, [...] Read more.
Conotrachelus nenuphar Herbst (Coleoptera: Curculionidae) is a key pest of stone and pome fruits in the United States. Application of certain entomopathogenic nematode (EPN) species has shown efficacy in some crops when targeting the larval stage of C. nenuphar in soil. To date, however, no EPNs have been tested for the control of this pest in highbush blueberries. In 2020, laboratory and field studies were conducted to: (1) determine the persistence of Steinernema riobrave, S. carpocapsae, S. feltiae, and Heterorhabditis bacteriophora in acidic blueberry soil; (2) compare the virulence of these EPNs to C. nenuphar larvae and pupae; and (3) compare the efficacy of these EPN species to control this pest in blueberry fields. The greatest persistence in blueberry soil was exhibited by S. riobrave followed by S. carpocapsae. Superior virulence was observed in S. riobrave against C. nenuphar larvae and pupae. Promising levels of virulence were also observed in S. carpocapsae and S. feltiae against the larvae, but S. scarabaei had low virulence. In the field, S. riobrave provided significantly higher levels of C. nenuphar suppression (90%) than the other EPNs. The field efficacy of S. riobrave against C. nenuphar at low and high rates was confirmed in 2021. Steinernema riobrave has the potential to become an important component in the management of C. nenuphar in highbush blueberry. Full article
(This article belongs to the Special Issue Biological Control in Agroecosystems)
Show Figures

Figure 1

21 pages, 4239 KiB  
Article
Can Symbiotic Bacteria (Xenorhabdus and Photorhabdus) Be More Efficient than Their Entomopathogenic Nematodes against Pieris rapae and Pentodon algerinus Larvae?
by Hanaa Elbrense, Amr M. A. Elmasry, Mahmoud F. Seleiman, Mohammad S. AL-Harbi and Ahmed M. Abd El-Raheem
Biology 2021, 10(10), 999; https://doi.org/10.3390/biology10100999 - 4 Oct 2021
Cited by 21 | Viewed by 3280
Abstract
Pieris rapae and Pentodon algerinus are considered a global threat to agricultural crops and food security; hence, their control is a critical issue. Heterorhabditid and Steinernematid nematodes, along with their symbiotic bacteria, can achieve the optimal biocontrol agent criterion. Therefore, this study aimed [...] Read more.
Pieris rapae and Pentodon algerinus are considered a global threat to agricultural crops and food security; hence, their control is a critical issue. Heterorhabditid and Steinernematid nematodes, along with their symbiotic bacteria, can achieve the optimal biocontrol agent criterion. Therefore, this study aimed to evaluate the efficacy of Heterorhabditis bacteriophora, Steinernema riobravis, and their symbiotic bacteria (Xenorhabdus and Photorhabdus) against P. rapae and P. algerinus larvae. The virulence of entomopathogenic nematodes (EPNs) was determined at different infective juvenile concentrations and exposure times, while the symbiotic bacteria were applied at the concentration of 3 × 107 colony-forming units (CFU)/mL at different exposure times. Gas chromatography–mass spectrophotometry (GC-MS) analysis and the cytotoxic effect of Photorhabdus sp. and Xenorhabdus sp. were determined. The results indicated that H. bacteriophora, S. riobravis, and their symbiotic bacteria significantly (p ≤ 0.001) induced mortality in both insect species. However, H. bacteriophora and its symbiont, Photorhabdus sp., were more virulent. Moreover, the data clarified that both symbiotic bacteria outperformed EPNs against P. rapae but the opposite was true for P. algerinus. GC-MS analysis revealed the main active compounds that have insecticidal activity. However, the results revealed that there was no significant cytotoxic effect. In conclusion, H. bacteriophora, S. riobravis, and their symbiotic bacteria can be an optimal option for bio-controlling both insect species. Furthermore, both symbiotic bacteria can be utilized independently on EPNs for the management of both pests, and, hence, they can be safely incorporated into biocontrol programs and tested against other insect pests. Full article
(This article belongs to the Special Issue Biological Control in Agroecosystems)
Show Figures

Graphical abstract

15 pages, 2510 KiB  
Article
Molecular Assay Development to Monitor the Kinetics of Viable Populations of Two Biocontrol Agents, Bacillus subtilis QST 713 and Gliocladium catenulatum J1446, in the Phyllosphere of Lettuce Leaves
by Gurkan Tut, Naresh Magan, Philip Brain and Xiangming Xu
Biology 2021, 10(3), 224; https://doi.org/10.3390/biology10030224 - 15 Mar 2021
Cited by 4 | Viewed by 2563
Abstract
Optimising the use of biocontrol agents (BCAs) requires the temporal tracking of viable populations in the crop phyllosphere to ensure that effective control can be achieved. No sensitive systems for quantifying viable populations of commercially available BCAs, such as Bacillus subtilis and Gliocladium [...] Read more.
Optimising the use of biocontrol agents (BCAs) requires the temporal tracking of viable populations in the crop phyllosphere to ensure that effective control can be achieved. No sensitive systems for quantifying viable populations of commercially available BCAs, such as Bacillus subtilis and Gliocladium catenulatum, in the phyllosphere of crop plants are available. The objective of this study was to develop a method to quantify viable populations of these two BCAs in the crop phyllosphere. A molecular tool based on propidium monoazide (PMA) (PMAxx™-qPCR) capable of quantifying viable populations of these two BCAs was developed. Samples were treated with PMAxx™ (12.5–100 μM), followed by 15 min incubation, exposure to a 800 W halogen light for 30 min, DNA extraction, and quantification using qPCR. This provided a platform for using the PMAxx™-qPCR technique for both BCAs to differentiate viable from dead cells. The maximum number of dead cells blocked, based on the DNA, was 3.44 log10 for B. subtilis and 5.75 log10 for G. catenulatum. Validation studies showed that this allowed accurate quantification of viable cells. This method provided effective quantification of the temporal changes in viable populations of the BCAs in commercial formulations on lettuce leaves in polytunnel and glasshouse production systems. Full article
(This article belongs to the Special Issue Biological Control in Agroecosystems)
Show Figures

Figure 1

16 pages, 2302 KiB  
Article
Effect of Weed Management on the Parasitoid Community in Mediterranean Vineyards
by Gabriella Möller , Tamar Keasar, Idan Shapira, Daniella Möller, Marco Ferrante and Michal Segoli
Biology 2021, 10(1), 7; https://doi.org/10.3390/biology10010007 - 24 Dec 2020
Cited by 13 | Viewed by 3521
Abstract
Enriching agroecosystems with non-crop vegetation is a popular strategy for conservation biocontrol. In vineyards, the effects of specific seeded or planted cover crops on natural enemies are well-studied, whereas conserving spontaneously developing weeds received less attention. We compared parasitoid communities between matched pairs [...] Read more.
Enriching agroecosystems with non-crop vegetation is a popular strategy for conservation biocontrol. In vineyards, the effects of specific seeded or planted cover crops on natural enemies are well-studied, whereas conserving spontaneously developing weeds received less attention. We compared parasitoid communities between matched pairs of vineyard plots in northern Israel, differing in weed management practices: “herbicide”, repeated herbicide applications vs. “ground cover”, maintaining resident weeds and trimming them when needed. Using suction sampling, we assessed the parasitoids’ abundance, richness, and composition during three grape-growing seasons. Ground cover plots had greater parasitoid abundances and cumulative species richness than herbicide-treated plots, possibly because of their higher vegetation cover and richness. Dominant parasitoid species varied in their magnitude and direction of response to weed management. Their responses seem to combine tracking of host distributions with attraction to additional vegetation-provided resources. Parasitoid community composition was mildly yet significantly influenced by weed management, while season, year, and habitat (weeds vs. vine) had stronger effects. Vineyard weeds thus support local biocontrol agents and provide additional previously demonstrated benefits (e.g., soil conservation, lower agrochemical exposure) but might also attract some crop pests. When the benefits outweigh this risk, weed conservation seems a promising step towards more sustainable agricultural management. Full article
(This article belongs to the Special Issue Biological Control in Agroecosystems)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 975 KiB  
Review
Natural Pest Regulation and Its Compatibility with Other Crop Protection Practices in Smallholder Bean Farming Systems
by Baltazar J. Ndakidemi, Ernest R. Mbega, Patrick A. Ndakidemi, Philip C. Stevenson, Steven R. Belmain, Sarah E. J. Arnold and Victoria C. Woolley
Biology 2021, 10(8), 805; https://doi.org/10.3390/biology10080805 - 20 Aug 2021
Cited by 7 | Viewed by 3845
Abstract
Common bean (Phaseolus vulgaris) production and storage are limited by numerous constraints. Insect pests are often the most destructive. However, resource-constrained smallholders in sub-Saharan Africa (SSA) often do little to manage pests. Where farmers do use a control strategy, it typically [...] Read more.
Common bean (Phaseolus vulgaris) production and storage are limited by numerous constraints. Insect pests are often the most destructive. However, resource-constrained smallholders in sub-Saharan Africa (SSA) often do little to manage pests. Where farmers do use a control strategy, it typically relies on chemical pesticides, which have adverse effects on the wildlife, crop pollinators, natural enemies, mammals, and the development of resistance by pests. Nature-based solutions —in particular, using biological control agents with sustainable approaches that include biopesticides, resistant varieties, and cultural tools—are alternatives to chemical control. However, significant barriers to their adoption in SSA include a lack of field data and knowledge on the natural enemies of pests, safety, efficacy, the spectrum of activities, the availability and costs of biopesticides, the lack of sources of resistance for different cultivars, and spatial and temporal inconsistencies for cultural methods. Here, we critically review the control options for bean pests, particularly the black bean aphid (Aphis fabae) and pod borers (Maruca vitrata). We identified natural pest regulation as the option with the greatest potential for this farming system. We recommend that farmers adapt to using biological control due to its compatibility with other sustainable approaches, such as cultural tools, resistant varieties, and biopesticides for effective management, especially in SSA. Full article
(This article belongs to the Special Issue Biological Control in Agroecosystems)
Show Figures

Graphical abstract

Back to TopTop