Uncovering the Mechanisms of Plant Salinity Stress Response and Tolerance

A special issue of Biology (ISSN 2079-7737). This special issue belongs to the section "Plant Science".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 515

Special Issue Editor


E-Mail Website
Guest Editor
Department of Soil and Plant Microbiology, EEZ-CSIC (Estación Experimental del Zaidin-Consejo Superior de Investigaciones Científicas), E-18100 Granada, Spain
Interests: abscisic acid; aquaporins; drought, ethylene; jasmonic acid; mycorrhizal fungi; salinity; soil bacteria; water relations
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Soil salinity is one of the main causes of crop yield reduction and plant species distribution around the world. Plants have developed a wide range of mechanisms to cope with soil salinity, ranging from physiological to molecular ones. Salinity effects on plants can be divided into osmotic and toxic ones. Therefore, responses of plants to salinity resemble that against drought stress, but there are other specific responses to salt stress such as toxic ion detoxification. Although the responses of plants to salinity have been extensively studied in the last decades, more research is still needed to understand how plants respond and tolerate salt stress.

We are pleased to invite you to submit primary research, reviews or methodological manuscripts dealing with the response of plants to salt stress. Ideally, manuscripts should deal with physiological (water relations, photosynthesis, nutrient uptake and assimilation, etc.), biochemical (antioxidant systems, primary and secondary metabolism, hormonal changes, etc.) and molecular (gene expression, genetic resources, transgenic plants, molecular signaling, etc.) responses. Manuscripts that combine different levels of research are encouraged, along with those including different organism levels (from the whole plant to the cell). Additionally, studies dealing with the interaction between plants and beneficial microorganisms are welcomed, with the focus on plant responses. These subjects are in complete accordance with the scope of the journal Biology. Hence, this Special Issue aims to advance the knowledge of the mechanisms underlying the response and tolerance of plants to salt stress.

I look forward to receiving your contributions.

Dr. Ricardo Aroca
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • genetic resources
  • ion toxicity
  • molecular signalling
  • nutrient uptake
  • plant hormones
  • soil beneficial microorganisms
  • water relations

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2772 KiB  
Article
Carrabiitol®, a Novel Oligosaccharide Polyol Composition, Mitigates the Impact of Flooding, Drought, Salinity, and High Temperature in Tomato
by Femida Yunus Patel, Kaushal Kishore Upreti, Ramanna Hunashikatti Laxman and Neil Jaykumar Shah
Biology 2024, 13(5), 356; https://doi.org/10.3390/biology13050356 - 19 May 2024
Viewed by 303
Abstract
Abiotic stress results in various physiological and biochemical changes in plants. Osmolytes play a pivotal role in improving the tolerance to abiotic stress in plants. This study evaluated the effectiveness of a commercial formulation, Carrabiitol®, an oligosaccharide polyol composition, in alleviating [...] Read more.
Abiotic stress results in various physiological and biochemical changes in plants. Osmolytes play a pivotal role in improving the tolerance to abiotic stress in plants. This study evaluated the effectiveness of a commercial formulation, Carrabiitol®, an oligosaccharide polyol composition, in alleviating adverse impacts of abiotic stress in tomato (Solanum lycopersicum L. var. Arka Rakshak) plants. Plants were raised from seed and treated with 1 mL/L, 2 mL/L, and 3 mL/L of Carrabiitol®. The foliage of developing plants was treated at the 2–3 leaf stage (T2, T3, and T4) and at pre-flowering stage (T5, T6, and T7). Growth conditions were compared with those of plants developed from untreated seed (T1). Developing tomato plants were then exposed to flooding, salinity (50 mM NaCl), high temperature (41.1 °C), or drought at the flowering stage. Plants were evaluated for their dry weight, leaf water potential, stomatal conductance, transpiration rate, antioxidant potential, chlorophyll, carotenoid, glucose, sucrose, malondialdehyde, and proline contents. Pre-treated seed, which received a booster treatment at the 2–3 leaf stage (T4 = seed treatment and booster at the 2–3 leaf stage with 3 mL/L Carrabiitol®) and pre-flowering stages (T5, T6, and T7 = seed treatment and booster doses at the pre-flowering stage with 1, 2, and 3 mL/L Carrabiitol®, respectively), was effective in mitigating negative impacts on various growth parameters of stressed tomato plants (p < 0.05). Carrabiitol® may be an effective, sustainable, and bio-rational organic osmolyte formulation for reducing the effects of abiotic stress on plant growth and productivity. Full article
Show Figures

Figure 1

Back to TopTop