Antioxidants in Cardiovascular Diseases

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Health Outcomes of Antioxidants and Oxidative Stress".

Deadline for manuscript submissions: 25 June 2024 | Viewed by 542

Special Issue Editors

Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
Interests: cardiovascular disease; metabolic diseases; mitochondrial metabolism; mtDNA mutation/editing; ROS
Special Issues, Collections and Topics in MDPI journals
Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
Interests: iron metabolism; oxidative stress; intervention strategies
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cardiovascular diseases (CVDs) are the leading cause of death globally. Imbalanced oxidative stress acts as a key determinant driving the pathogenesis and progression of multiple CVDs and is therefore an emerging therapeutic target. Despite the great achievements in this field, limitations such as the low therapeutic efficacy of antioxidants in a certain type of CVD, poor pharmaceutical properties, lack of site-specific delivery, and unclear mechanisms of action remain to be addressed.

This Special Issue is aimed at providing selected contributions on advances in the identification and development of new forms of antioxidants, their mechanisms, and potential applications in cardiovascular biology and disease management. Potential topics include, but are not limited to the following: novel antioxidant agents for CVDs; mechanisms of action of a specific antioxidant in CVDs; future perspectives for antioxidants in CVDs; development of new nanoformulations of antioxidants; adverse effects of nanoformulations of antioxidants; biopharmaceutical or pharmacokinetics of nanoformulations for CVDs.

Dr. Yongting Luo
Dr. Junjie Luo
Dr. Peng An
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cardiovascular disease
  • antioxidants
  • ROS
  • mechanism
  • nanoformulations

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 16723 KiB  
Article
The Antioxidant Dendrobium officinale Polysaccharide Modulates Host Metabolism and Gut Microbiota to Alleviate High-Fat Diet-Induced Atherosclerosis in ApoE−/− Mice
by Jingyi Qi, Shuaishuai Zhou, Guisheng Wang, Rongrong Hua, Xiaoping Wang, Jian He, Zi Wang, Yinhua Zhu, Junjie Luo, Wenbiao Shi, Yongting Luo and Xiaoxia Chen
Antioxidants 2024, 13(5), 599; https://doi.org/10.3390/antiox13050599 (registering DOI) - 13 May 2024
Viewed by 116
Abstract
Background: The discovery of traditional plants’ medicinal and nutritional properties has opened up new avenues for developing pharmaceutical and dietary strategies to prevent atherosclerosis. However, the effect of the antioxidant Dendrobium officinale polysaccharide (DOP) on atherosclerosis is still not elucidated. Purpose: This study [...] Read more.
Background: The discovery of traditional plants’ medicinal and nutritional properties has opened up new avenues for developing pharmaceutical and dietary strategies to prevent atherosclerosis. However, the effect of the antioxidant Dendrobium officinale polysaccharide (DOP) on atherosclerosis is still not elucidated. Purpose: This study aims to investigate the inhibitory effect and the potential mechanism of DOP on high-fat diet-induced atherosclerosis in Apolipoprotein E knockout (ApoE−/−) mice. Study design and methods: The identification of DOP was measured by high-performance gel permeation chromatography (HPLC) and Fourier transform infrared spectroscopy (FTIR). We used high-fat diet (HFD)-induced atherosclerosis in ApoE−/− mice as an animal model. In the DOP intervention stage, the DOP group was treated by gavage with 200 μL of 200 mg/kg DOP at regular times each day and continued for eight weeks. We detected changes in serum lipid profiles, inflammatory factors, anti-inflammatory factors, and antioxidant capacity to investigate the effect of the DOP on host metabolism. We also determined microbial composition using 16S rRNA gene sequencing to investigate whether the DOP could improve the structure of the gut microbiota in atherosclerotic mice. Results: DOP effectively inhibited histopathological deterioration in atherosclerotic mice and significantly reduced serum lipid levels, inflammatory factors, and malondialdehyde (F/B) production. Additionally, the levels of anti-inflammatory factors and the activity of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), were significantly increased after DOP intervention. Furthermore, we found that DOP restructures the gut microbiota composition by decreasing the Firmicutes/Bacteroidota (F/B) ratio. The Spearman’s correlation analysis indicated that serum lipid profiles, antioxidant activity, and pro-/anti-inflammatory factors were associated with Firmicutes, Bacteroidota, Allobaculum, and Coriobacteriaceae_UCG-002. Conclusions: This study suggests that DOP has the potential to be developed as a food prebiotic for the treatment of atherosclerosis in the future. Full article
(This article belongs to the Special Issue Antioxidants in Cardiovascular Diseases)
Show Figures

Figure 1

Back to TopTop