Next Issue
Previous Issue

Table of Contents

Metabolites, Volume 2, Issue 2 (June 2012), Pages 292-381

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-4
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Metabolomic and Lipidomic Analysis of the Heart of Peroxisome Proliferator-Activated Receptor-γ Coactivator 1-β Knock Out Mice on a High Fat Diet
Metabolites 2012, 2(2), 366-381; doi:10.3390/metabo2020366
Received: 5 April 2012 / Revised: 21 May 2012 / Accepted: 4 June 2012 / Published: 18 June 2012
Cited by 1 | PDF Full-text (441 KB) | HTML Full-text | XML Full-text
Abstract
The peroxisome proliferator-activated receptor-γ coactivators (PGC-1) are transcriptional coactivators with an important role in mitochondrial biogenesis and regulation of genes involved in the electron transport chain and oxidative phosphorylation in oxidative tissues including cardiac tissue. These coactivators are thought to play a key
[...] Read more.
The peroxisome proliferator-activated receptor-γ coactivators (PGC-1) are transcriptional coactivators with an important role in mitochondrial biogenesis and regulation of genes involved in the electron transport chain and oxidative phosphorylation in oxidative tissues including cardiac tissue. These coactivators are thought to play a key role in the development of obesity, type 2 diabetes and the metabolic syndrome. In this study we have used a combined metabolomic and lipidomic analysis of cardiac tissue from the PGC-1β null mouse to examine the effects of a high fat diet on this organ. Multivariate statistics readily separated tissue from PGC-1β null mice from their wild type controls either in gender specific models or in combined datasets. This was associated with an increase in creatine and a decrease in taurine in the null mouse, and an increase in myristic acid and a reduction in long chain polyunsaturated fatty acids for both genders. The most profound changes were detected by liquid chromatography mass spectrometry analysis of intact lipids with the tissue from the null mouse having a profound increase in a number of triglycerides. The metabolomic and lipodomic changes indicate PGC-1β has a profound influence on cardiac metabolism. Full article
(This article belongs to the Special Issue Lipidomics)

Review

Jump to: Research

Open AccessReview 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-Monophosphate (AICAR), a Highly Conserved Purine Intermediate with Multiple Effects
Metabolites 2012, 2(2), 292-302; doi:10.3390/metabo2020292
Received: 29 February 2012 / Revised: 15 March 2012 / Accepted: 16 March 2012 / Published: 23 March 2012
Cited by 10 | PDF Full-text (298 KB) | HTML Full-text | XML Full-text
Abstract
AICAR (5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate) is a natural metabolic intermediate of purine biosynthesis that is present in all organisms. In yeast, AICAR plays important regulatory roles under physiological conditions, notably through its direct interactions with transcription factors. In humans, AICAR accumulates in several metabolic diseases,
[...] Read more.
AICAR (5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate) is a natural metabolic intermediate of purine biosynthesis that is present in all organisms. In yeast, AICAR plays important regulatory roles under physiological conditions, notably through its direct interactions with transcription factors. In humans, AICAR accumulates in several metabolic diseases, but its contribution to the symptoms has not yet been elucidated. Further, AICAR has highly promising properties which have been recently revealed. Indeed, it enhances endurance of sedentary mice. In addition, it has antiproliferative effects notably by specifically inducing apoptosis of aneuploid cells. Some of the effects of AICAR are due to its ability to stimulate the AMP-activated protein kinase but some others are not. It is consequently clear that AICAR affects multiple targets although only few of them have been identified so far. This review proposes an overview of the field and suggests future directions. Full article
(This article belongs to the Special Issue Feature Papers)
Figures

Open AccessReview A Historical Overview of Natural Products in Drug Discovery
Metabolites 2012, 2(2), 303-336; doi:10.3390/metabo2020303
Received: 1 March 2012 / Revised: 31 March 2012 / Accepted: 31 March 2012 / Published: 16 April 2012
Cited by 110 | PDF Full-text (542 KB) | HTML Full-text | XML Full-text
Abstract
Historically, natural products have been used since ancient times and in folklore for the treatment of many diseases and illnesses. Classical natural product chemistry methodologies enabled a vast array of bioactive secondary metabolites from terrestrial and marine sources to be discovered. Many of
[...] Read more.
Historically, natural products have been used since ancient times and in folklore for the treatment of many diseases and illnesses. Classical natural product chemistry methodologies enabled a vast array of bioactive secondary metabolites from terrestrial and marine sources to be discovered. Many of these natural products have gone on to become current drug candidates. This brief review aims to highlight historically significant bioactive marine and terrestrial natural products, their use in folklore and dereplication techniques to rapidly facilitate their discovery. Furthermore a discussion of how natural product chemistry has resulted in the identification of many drug candidates; the application of advanced hyphenated spectroscopic techniques to aid in their discovery, the future of natural product chemistry and finally adopting metabolomic profiling and dereplication approaches for the comprehensive study of natural product extracts will be discussed. Full article
(This article belongs to the Special Issue Secondary Metabolites and Metabolism)
Open AccessReview Targeted Chiral Analysis of Bioactive Arachidonic Acid Metabolites Using Liquid-Chromatography-Mass Spectrometry
Metabolites 2012, 2(2), 337-365; doi:10.3390/metabo2020337
Received: 1 March 2012 / Revised: 2 April 2012 / Accepted: 9 April 2012 / Published: 20 April 2012
Cited by 6 | PDF Full-text (943 KB) | HTML Full-text | XML Full-text
Abstract
A complex structurally diverse series of eicosanoids arises from the metabolism of arachidonic acid. The metabolic profile is further complicated by the enantioselectivity of eicosanoid formation and the variety of regioisomers that arise. In order to investigate the metabolism of arachidonic acid in
[...] Read more.
A complex structurally diverse series of eicosanoids arises from the metabolism of arachidonic acid. The metabolic profile is further complicated by the enantioselectivity of eicosanoid formation and the variety of regioisomers that arise. In order to investigate the metabolism of arachidonic acid in vitro or in vivo, targeted methods are advantageous in order to distinguish between the complex isomeric mixtures that can arise by different metabolic pathways. Over the last several years this targeted approach has become more popular, although there are still relatively few examples where chiral targeted approaches have been employed to directly analyze complex enantiomeric mixtures. To efficiently conduct targeted eicosanoid analyses, LC separations are coupled with collision induced dissociation (CID) and tandem mass spectrometry (MS/MS). Product ion profiles are often diagnostic for particular regioisomers. The highest sensitivity that can be achieved involves the use of selected reaction monitoring/mass spectrometry (SRM/MS); whereas the highest specificity is obtained with an SRM transitions between an intense parent ion, which contains the intact molecule (M) and a structurally significant product ion. This review article provides an overview of arachidonic acid metabolism and targeted chiral methods that have been utilized for the analysis of the structurally diverse eicosanoids that arise. Full article
(This article belongs to the Special Issue Analytical Techniques in Metabolomics)

Journal Contact

MDPI AG
Metabolites Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
metabolites@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Metabolites
Back to Top