Next Issue
Previous Issue

Table of Contents

Vaccines, Volume 5, Issue 4 (December 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-21
Export citation of selected articles as:
Open AccessArticle Vaccination with Combination DNA and Virus-Like Particles Enhances Humoral and Cellular Immune Responses upon Boost with Recombinant Modified Vaccinia Virus Ankara Expressing Human Immunodeficiency Virus Envelope Proteins
Received: 31 October 2017 / Revised: 6 December 2017 / Accepted: 12 December 2017 / Published: 19 December 2017
PDF Full-text (1707 KB) | HTML Full-text | XML Full-text
Abstract
Heterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA) vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1). To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after
[...] Read more.
Heterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA) vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1). To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after three sequential immunizations with DNA, a combination of DNA and virus-like particles (VLP), and rMVA expressing HIV-1 89.6 gp120 envelope proteins (Env). DNA prime and boost with a combination of VLP and DNA vaccines followed by an rMVA boost induced over a 100-fold increase in Env-specific IgG antibody titers compared to three sequential immunizations with DNA and rMVA. Cellular immune responses were induced by VLP-DNA and rMVA vaccinations at high levels in CD8 T cells, CD4 T cells, and peripheral blood mononuclear cells secreting interferon (IFN)-γ, and spleen cells producing interleukin (IL)-2, 4, 5 cytokines. This study suggests that a DNA and VLP combination vaccine with MVA is a promising strategy in enhancing the efficacy of DNA-rMVA vaccination against HIV-1. Full article
Figures

Figure 1

Open AccessReview A Portrait of the Sialyl Glycan Receptor Specificity of the H10 Influenza Virus Hemagglutinin—A Picture of an Avian Virus on the Verge of Becoming a Pandemic?
Received: 27 November 2017 / Revised: 11 December 2017 / Accepted: 12 December 2017 / Published: 13 December 2017
PDF Full-text (1560 KB) | HTML Full-text | XML Full-text
Abstract
Pandemic influenza is a constant global threat to human health. In particular, the pandemic potential of novel avian influenza viruses such as the H10N7 and H10N8 avian strains, which recently managed to cross the species barrier from birds to humans, are always of
[...] Read more.
Pandemic influenza is a constant global threat to human health. In particular, the pandemic potential of novel avian influenza viruses such as the H10N7 and H10N8 avian strains, which recently managed to cross the species barrier from birds to humans, are always of great concern as we are unlikely to have any prior immunity. Human and avian isolates of H10 influenza display the ability to rapidly adapt to replication in mammalian hosts. Fortunately, so far there is no evidence of efficient human-to-human transmission of any avian influenza virus. This review examines all of the available clinical and biological data for H10 influenza viruses with an emphasis on hemagglutinin as it is a major viral antigen that determines host range and immunity. The available glycan binding data on the influenza H10 hemagglutinin are discussed in a structure-recognition perspective. Importantly, this review raises the question of whether the emerging novel avian H10 influenza viruses truly represents a threat to global health that warrants close monitoring. Full article
(This article belongs to the Special Issue The Role of Hemagglutinin in Influenza Viruses Infection)
Figures

Figure 1

Open AccessReview Adjuvant Probiotics and the Intestinal Microbiome: Enhancing Vaccines and Immunotherapy Outcomes
Received: 23 November 2017 / Revised: 5 December 2017 / Accepted: 6 December 2017 / Published: 11 December 2017
Cited by 2 | PDF Full-text (1382 KB) | HTML Full-text | XML Full-text | Correction
Abstract
Immune defence against pathogenic agents comprises the basic premise for the administration of vaccines. Vaccinations have hence prevented millions of infectious illnesses, hospitalizations and mortality. Acquired immunity comprises antibody and cell mediated responses and is characterized by its specificity and memory. Along a
[...] Read more.
Immune defence against pathogenic agents comprises the basic premise for the administration of vaccines. Vaccinations have hence prevented millions of infectious illnesses, hospitalizations and mortality. Acquired immunity comprises antibody and cell mediated responses and is characterized by its specificity and memory. Along a similar congruent yet diverse mode of disease prevention, the human host has negotiated from in utero and at birth with the intestinal commensal bacterial cohort to maintain local homeostasis in order to achieve immunological tolerance in the new born. The advent of the Human Microbiome Project has redefined an appreciation of the interactions between the host and bacteria in the intestines from one of a collection of toxic waste to one of a symbiotic existence. Probiotics comprise bacterial genera thought to provide a health benefit to the host. The intestinal microbiota has profound effects on local and extra-intestinal end organ physiology. As such, we further posit that the adjuvant administration of dedicated probiotic formulations can encourage the intestinal commensal cohort to beneficially participate in the intestinal microbiome-intestinal epithelia-innate-cell mediated immunity axes and cell mediated cellular immunity with vaccines aimed at preventing infectious diseases whilst conserving immunological tolerance. The strength of evidence for the positive effect of probiotic administration on acquired immune responses has come from various studies with viral and bacterial vaccines. We posit that the introduction early of probiotics may provide significant beneficial immune outcomes in neonates prior to commencing a vaccination schedule or in elderly adults prior to the administration of vaccinations against influenza viruses. Full article
Figures

Figure 1

Open AccessArticle A Burkholderia pseudomallei Outer Membrane Vesicle Vaccine Provides Cross Protection against Inhalational Glanders in Mice and Non-Human Primates
Received: 23 November 2017 / Revised: 5 December 2017 / Accepted: 6 December 2017 / Published: 9 December 2017
PDF Full-text (1811 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Burkholderia mallei is a Gram-negative, non-motile, facultative intracellular bacillus and the causative agent of glanders, a highly contagious zoonotic disease. B. mallei is naturally resistant to multiple antibiotics and there is concern for its potential use as a bioweapon, making the development of
[...] Read more.
Burkholderia mallei is a Gram-negative, non-motile, facultative intracellular bacillus and the causative agent of glanders, a highly contagious zoonotic disease. B. mallei is naturally resistant to multiple antibiotics and there is concern for its potential use as a bioweapon, making the development of a vaccine against B. mallei of critical importance. We have previously demonstrated that immunization with multivalent outer membrane vesicles (OMV) derived from B. pseudomallei provide significant protection against pneumonic melioidosis. Given that many virulence determinants are highly conserved between the two species, we sought to determine if the B. pseudomallei OMV vaccine could cross-protect against B. mallei. We immunized C57Bl/6 mice and rhesus macaques with B. pseudomallei OMVs and subsequently challenged animals with aerosolized B. mallei. Immunization with B. pseudomallei OMVs significantly protected mice against B. mallei and the protection observed was comparable to that achieved with a live attenuated vaccine. OMV immunization induced the production of B.mallei-specific serum IgG and a mixed Th1/Th17 CD4 and CD8 T cell response in mice. Additionally, immunization of rhesus macaques with B. pseudomallei OMVs provided protection against glanders and induced B.mallei-specific serum IgG in non-human primates. These results demonstrate the ability of the multivalent OMV vaccine platform to elicit cross-protection against closely-related intracellular pathogens and to induce robust humoral and cellular immune responses against shared protective antigens. Full article
(This article belongs to the collection Vaccines Against Chronic and Persistent Bacterial Infections)
Figures

Figure 1

Open AccessFeature PaperReview Maternal Vaccination. Immunization of Sows during Pregnancy against ETEC Infections
Received: 3 October 2017 / Revised: 20 November 2017 / Accepted: 3 December 2017 / Published: 6 December 2017
PDF Full-text (1013 KB) | HTML Full-text | XML Full-text
Abstract
The immunology of pregnancy is an evolving consequence of multiple reciprocal interactions between the maternal and the fetal-placental systems. The immune response must warrant the pregnancy outcome (including tolerance to paternal antigens), but at the same time, efficiently respond to pathogenic challenges. Enterotoxigenic
[...] Read more.
The immunology of pregnancy is an evolving consequence of multiple reciprocal interactions between the maternal and the fetal-placental systems. The immune response must warrant the pregnancy outcome (including tolerance to paternal antigens), but at the same time, efficiently respond to pathogenic challenges. Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of illness and death in neonatal and recently weaned pigs. This review aims to give an overview of the current rationale on the maternal vaccination strategies for the protection of the newborn pig against ETEC. Newborn piglets are immunodeficient and naturally dependent on the maternal immunity transferred by colostrum for protection—a maternal immunity that can be obtained by vaccinating the sow during pregnancy. Our current knowledge of the interactions between the pathogen strategies, virulence factors, and the host immune system is aiding the better design of vaccination strategies in this particular and challenging host status. Challenges include the need for better induction of immunity at the mucosal level with the appropriate use of adjuvants, able to induce the most appropriate and long-lasting protective immune response. These include nanoparticle-based adjuvants for oral immunization. Experiences can be extrapolated to other species, including humans. Full article
Figures

Figure 1

Open AccessArticle Prophylactic Sublingual Immunization with Mycobacterium tuberculosis Subunit Vaccine Incorporating the Natural Killer T Cell Agonist Alpha-Galactosylceramide Enhances Protective Immunity to Limit Pulmonary and Extra-Pulmonary Bacterial Burden in Mice
Received: 3 October 2017 / Revised: 29 November 2017 / Accepted: 1 December 2017 / Published: 6 December 2017
Cited by 2 | PDF Full-text (1202 KB) | HTML Full-text | XML Full-text
Abstract
Infection by Mycobacterium tuberculosis (Mtb) remains a major global concern and the available Bacillus Calmette-Guerin (BCG) vaccine is poorly efficacious in adults. Therefore, alternative vaccines and delivery strategies focusing on Mtb antigens and appropriate immune stimulating adjuvants are needed to induce protective immunity
[...] Read more.
Infection by Mycobacterium tuberculosis (Mtb) remains a major global concern and the available Bacillus Calmette-Guerin (BCG) vaccine is poorly efficacious in adults. Therefore, alternative vaccines and delivery strategies focusing on Mtb antigens and appropriate immune stimulating adjuvants are needed to induce protective immunity targeted to the lungs, the primary sites of infections and pathology. We present here evidence in support of mucosal vaccination by the sublingual route in mice using the subunit Mtb antigens Ag85B and ESAT-6 adjuvanted with the glycolipid alpha-galactosylceramide (α-GalCer), a potent natural killer T (NKT) cell agonist. Vaccinated animals exhibited strong antigen-specific CD4 and CD8 T cells responses in the spleen, cervical lymph nodes and lungs. In general, inclusion of the α-GalCer adjuvant significantly enhanced these responses that persisted over 50 days. Furthermore, aerosolized Mtb infection of vaccinated mice resulted in a significant reduction of bacterial load of the lungs and spleens as compared to levels seen in naïve controls or those vaccinated with subunit proteins, adjuvant , or BCG alone. The protection induced by the Mtb antigens and-GalCer vaccine through sublingual route correlated with a TH1-type immunity mediated by antigen-specific IFN-γ and IL-2 producing T cells. Full article
Figures

Figure 1

Open AccessMeeting Report Equine Vaccines: How, When and Why? Report of the Vaccinology Session, French Equine Veterinarians Association, 2016, Reims
Received: 24 October 2017 / Revised: 15 November 2017 / Accepted: 29 November 2017 / Published: 4 December 2017
PDF Full-text (1935 KB) | HTML Full-text | XML Full-text
Abstract
To date, vaccination is one of the most efficient methods of prevention against equine infectious diseases. The vaccinology session, which was organised during the annual meeting of the French Equine Veterinarians Association (AVEF) at Reims (France) in 2016, aimed to approach three subjects
[...] Read more.
To date, vaccination is one of the most efficient methods of prevention against equine infectious diseases. The vaccinology session, which was organised during the annual meeting of the French Equine Veterinarians Association (AVEF) at Reims (France) in 2016, aimed to approach three subjects of importance for the equine industry. Vaccination against three major equine diseases were used as examples: equine influenza (equine influenza virus), rhinopneumonitis (equine herpes virus 1/4), and tetanus (Clostridium tetani neuro-toxin). (1) Emergency vaccination: while it has been very successful to reduce the impact of equine influenza epizooties and it is also recommended for tetanus in case of surgery and accident, the benefit of emergency vaccination against equine herpes virus 1/4 remains arguable; (2) Compatibility of equine vaccines from different brands: despite being a frequent concerns for equine veterinarians, little information is available about the compatibility of equine vaccines from different commercial origins. The consequence of mixing different equine vaccines targeting the same disease is believed to be limited but scientific evidences are sparse; and, (3) Laps vaccination and vaccine shortage: they could have serious consequences in terms of protection and their impact should be evaluated on a case by case basis, taking into account the risk of contact with the pathogen and the effect on herd immunity. Full article
Figures

Figure 1

Open AccessArticle Detection of Nuclear Protein Profile Changes by Human Metapneumovirus M2-2 Protein Using Quantitative Differential Proteomics
Received: 13 October 2017 / Revised: 14 November 2017 / Accepted: 29 November 2017 / Published: 3 December 2017
PDF Full-text (3209 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Human metapneumovirus (hMPV) is a leading cause of lower respiratory infection in pediatric populations globally. This study examined proteomic profile changes in A549 cells infected with hMPV and two attenuated mutants with deleted PDZ domain-binding motif(s) in the M2-2 protein. These motifs are
[...] Read more.
Human metapneumovirus (hMPV) is a leading cause of lower respiratory infection in pediatric populations globally. This study examined proteomic profile changes in A549 cells infected with hMPV and two attenuated mutants with deleted PDZ domain-binding motif(s) in the M2-2 protein. These motifs are involved in the interruption of antiviral signaling, namely the interaction between the TNF receptor associated factor (TRAF) and mitochondrial antiviral-signaling (MAVS) proteins. The aim of this study was to provide insight into the overall and novel impact of M2-2 motifs on cellular responses via an unbiased comparison. Tandem mass tagging, stable isotope labeling, and high-resolution mass spectrometry were used for quantitative proteomic analysis. Using quantitative proteomics and Venn analysis, 1248 common proteins were detected in all infected samples of both technical sets. Hierarchical clustering of the differentiated proteome displayed distinct proteomic signatures that were controlled by the motif(s). Bioinformatics and experimental analysis confirmed the differentiated proteomes, revealed novel cellular biological events, and implicated key pathways controlled by hMPV M2-2 PDZ domain-binding motif(s). This provides further insight for evaluating M2-2 mutants as potent vaccine candidates. Full article
Figures

Figure 1

Open AccessLetter A New Whooping Cough Vaccine That May Prevent Colonization and Transmission
Received: 8 October 2017 / Revised: 2 November 2017 / Accepted: 6 November 2017 / Published: 10 November 2017
PDF Full-text (148 KB) | HTML Full-text | XML Full-text
Abstract
This article is a Letter to the Editor. The major purpose of this Letter is to highlight the development of a new genetically altered whooping cough vaccine. Recently a baboon model has been used to show that this next generation pertussis vaccine can
[...] Read more.
This article is a Letter to the Editor. The major purpose of this Letter is to highlight the development of a new genetically altered whooping cough vaccine. Recently a baboon model has been used to show that this next generation pertussis vaccine can prevent colonization, as well as disease, and elicit antibodies against major pertussis antigens. Two phase I clinical trials have been performed, showing that this new vaccine is safe in humans, and a phase II trial will be performed in the US in 2018. Full article
Open AccessReview Mechanisms of Entry and Endosomal Pathway of African Swine Fever Virus
Received: 6 September 2017 / Revised: 19 October 2017 / Accepted: 31 October 2017 / Published: 8 November 2017
PDF Full-text (1903 KB) | HTML Full-text | XML Full-text
Abstract
African Swine Fever Virus (ASFV) causes a serious swine disease that is endemic in Africa and Sardinia and presently spreading in Russia and neighboring countries, including Poland and recently, the Czech Republic. This uncontrolled dissemination is a world-wide threat, as no specific protection
[...] Read more.
African Swine Fever Virus (ASFV) causes a serious swine disease that is endemic in Africa and Sardinia and presently spreading in Russia and neighboring countries, including Poland and recently, the Czech Republic. This uncontrolled dissemination is a world-wide threat, as no specific protection or vaccine is available. ASFV is a very complex icosahedral, enveloped virus about 200 nm in diameter, which infects several members of pigs. The virus enters host cells by receptor-mediated endocytosis that depends on energy, vacuolar pH and temperature. The specific receptor(s) and attachment factor(s) involved in viral entry are still unknown, although macropinocytosis and clathrin-dependent mechanisms have been proposed. After internalization, ASFV traffics through the endolysosomal system. The capsid and inner envelope are found in early endosomes or macropinosomes early after infection, colocalizing with EEA1 and Rab5, while at later times they co-localize with markers of late endosomes and lysosomes, such as Rab7 or Lamp 1. A direct relationship has been established between the maturity of the endosomal pathway and the progression of infection in the cell. Finally, ASFV uncoating first involves the loss of the outer capsid layers, and later fusion of the inner membrane with endosomes, releasing the nude core into the cytosol. Full article
Figures

Figure 1

Open AccessArticle pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity
Received: 3 October 2017 / Revised: 31 October 2017 / Accepted: 3 November 2017 / Published: 4 November 2017
PDF Full-text (3173 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
(1) Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic
[...] Read more.
(1) Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic delivery of antigen via membrane rupture or fusion with endosomes. However, a more versatile cytoplasmic delivery system is desired for practical use. For this study, we developed pH-responsive micelles composed of dilauroyl phosphatidylcholine (DLPC) and deoxycholic acid and investigated their cytoplasmic delivery performance and immunity-inducing capability. (2) Methods: Interaction of micelles with fluorescence dye-loaded liposomes, intracellular distribution of micelles, and antigenic proteins were observed. Finally, antigen-specific cellular immune response was evaluated in vivo using ELIspot assay. (3) Results: Micelles induced leakage of contents from liposomes via lipid mixing at low pH. Micelles were taken up by dendritic cells mainly via macropinocytosis and delivered ovalbumin (OVA) into the cytosol. After intradermal injection of micelles and OVA, OVA-specific cellular immunity was induced in the spleen. (4) Conclusions: pH-responsive micelles composed of DLPC and deoxycholic acid are promising as enhancers of cytosol delivery of antigens and the induction capability of cellular immunity for the treatment of cancer immunotherapy and infectious diseases. Full article
Figures

Figure 1

Open AccessReview Impact of the Respiratory Microbiome on Host Responses to Respiratory Viral Infection
Received: 5 September 2017 / Revised: 30 October 2017 / Accepted: 31 October 2017 / Published: 3 November 2017
Cited by 1 | PDF Full-text (1851 KB) | HTML Full-text | XML Full-text
Abstract
Viruses are responsible for most of both upper and lower acute respiratory infections (ARIs). The microbiome—the ecological community of microorganisms sharing the body space, which has gained considerable interest over the last decade—is modified in health and disease states. Even if most of
[...] Read more.
Viruses are responsible for most of both upper and lower acute respiratory infections (ARIs). The microbiome—the ecological community of microorganisms sharing the body space, which has gained considerable interest over the last decade—is modified in health and disease states. Even if most of these disturbances have been previously described in relation to chronic disorders of the gastrointestinal microbiome, after a short reminder of microbiome characteristics and methods of characterization, this review will describe the impact of the microbiome (mainly respiratory) on host responses to viral ARIs. The microbiome has a direct environmental impact on the host cells but also an indirect impact on the immune system, by enhancing innate or adaptive immune responses. In microbial infections, especially in viral infections, these dramatic modifications could lead to a dramatic impact responsible for severe clinical outcomes. Studies focusing on the microbiome associated with transcriptomic analyses of the host response and deep characterization of the pathogen would lead to a better understanding of viral pathogenesis and open avenues for biomarker development and innovative therapeutics. Full article
(This article belongs to the Special Issue Host Responses to Viral Infection)
Figures

Figure 1

Open AccessReview Neutralization of Human Cytomegalovirus Entry into Fibroblasts and Epithelial Cells
Received: 13 October 2017 / Revised: 26 October 2017 / Accepted: 27 October 2017 / Published: 31 October 2017
Cited by 1 | PDF Full-text (2097 KB) | HTML Full-text | XML Full-text
Abstract
Human cytomegalovirus (HCMV) is a leading cause of permanent birth defects, highlighting the need to develop an HCMV vaccine candidate. However, HCMV vaccine development is complicated by the varying capacity of neutralizing antibodies (NAb) to interfere in vitro with the HCMV entry routes
[...] Read more.
Human cytomegalovirus (HCMV) is a leading cause of permanent birth defects, highlighting the need to develop an HCMV vaccine candidate. However, HCMV vaccine development is complicated by the varying capacity of neutralizing antibodies (NAb) to interfere in vitro with the HCMV entry routes mediating infection of fibroblast (FB) and epithelial cells (EC). While HCMV infection of FB and EC requires glycoprotein complexes composed of gB and gH/gL/gO, EC infection depends additionally on the envelope pentamer complex (PC) composed of gH, gL, UL128, UL130 and UL131A. Unlike NAb to gB or gH epitopes that can interfere with both FB and EC infection, NAb targeting predominantly conformational epitopes of the UL128/130/131A subunits are unable to prevent FB entry, though they are highly potent in blocking EC infection. Despite the selective requirement of the PC for EC entry, the PC is exceptionally immunogenic as vaccine antigen to stimulate both EC- and FB-specific NAb responses due to its capacity to elicit NAb that target epitopes of the UL128/130/131A subunits and gH. These findings suggest that the PC could be sufficient in a subunit vaccine formulation to induce robust FB- and EC-specific NAb responses. In this short review, we discuss NAb responses induced through natural infection and vaccination that interfere in vitro with HCMV infection of FB and EC. Full article
Figures

Figure 1

Open AccessArticle An Archaeosome-Adjuvanted Vaccine and Checkpoint Inhibitor Therapy Combination Significantly Enhances Protection from Murine Melanoma
Received: 16 September 2017 / Revised: 3 October 2017 / Accepted: 20 October 2017 / Published: 26 October 2017
PDF Full-text (1489 KB) | HTML Full-text | XML Full-text
Abstract
Archaeosomes constitute archaeal lipid vesicle vaccine adjuvants that evoke a strong CD8+ T cell response to antigenic cargo. Therapeutic treatment of murine B16-ovalbumin (B16-OVA) melanoma with archaeosome-OVA eliminates small subcutaneous solid tumors; however, they eventually resurge despite an increased frequency of circulating
[...] Read more.
Archaeosomes constitute archaeal lipid vesicle vaccine adjuvants that evoke a strong CD8+ T cell response to antigenic cargo. Therapeutic treatment of murine B16-ovalbumin (B16-OVA) melanoma with archaeosome-OVA eliminates small subcutaneous solid tumors; however, they eventually resurge despite an increased frequency of circulating and tumor infiltrating OVA-CD8+ T cells. Herein, a number of different approaches were evaluated to improve responses, including dose number, interval, and the combination of vaccine with checkpoint inhibitors. Firstly, we found that tumor protection could not be enhanced by repetitive and/or delayed boosting to maximize the CD8+ T cell number and/or phenotype. The in vivo cytotoxicity of vaccine-induced OVA-CD8+ T cells was impaired in tumor-bearing mice. Additionally, tumor-infiltrating OVA-CD8+ T cells had an increased expression of programmed cell death protein-1 (PD-1) compared to other organ compartments, suggesting impaired function. Combination therapy of tumor-bearing mice with the vaccine archaeosome-OVA, and α-CTLA-4 administered concurrently as well as α-PD-1 and an α-PD-L1 antibody administered starting 9 days after tumor challenge given on a Q3Dx4 schedule (days 9, 12, 15 and 18), significantly enhanced survival. Following multi-combination therapy ~70% of mice had rapid tumor recession, with no detectable tumor mass after >80 days in comparison to a median survival of 17–22 days for untreated or experimental groups receiving single therapies. Overall, archaeosomes offer a powerful platform for delivering cancer antigens when used in combination with checkpoint inhibitor immunotherapies. Full article
Figures

Figure 1

Open AccessReview Elucidating the Role of Host Long Non-Coding RNA during Viral Infection: Challenges and Paths Forward
Received: 26 September 2017 / Revised: 12 October 2017 / Accepted: 17 October 2017 / Published: 20 October 2017
PDF Full-text (553 KB) | HTML Full-text | XML Full-text
Abstract
Research over the past decade has clearly shown that long non-coding RNAs (lncRNAs) are functional. Many lncRNAs can be related to immunity and the host response to viral infection, but their specific functions remain largely elusive. The vast majority of lncRNAs are annotated
[...] Read more.
Research over the past decade has clearly shown that long non-coding RNAs (lncRNAs) are functional. Many lncRNAs can be related to immunity and the host response to viral infection, but their specific functions remain largely elusive. The vast majority of lncRNAs are annotated with extremely limited knowledge and tend to be expressed at low levels, making ad hoc experimentation difficult. Changes to lncRNA expression during infection can be systematically profiled using deep sequencing; however, this often produces an intractable number of candidate lncRNAs, leaving no clear path forward. For these reasons, it is especially important to prioritize lncRNAs into high-confidence “hits” by utilizing multiple methodologies. Large scale perturbation studies may be used to screen lncRNAs involved in phenotypes of interest, such as resistance to viral infection. Single cell transcriptome sequencing quantifies cell-type specific lncRNAs that are less abundant in a mixture. When coupled with iterative experimental validations, new computational strategies for efficiently integrating orthogonal high-throughput data will likely be the driver for elucidating the functional role of lncRNAs during viral infection. This review highlights new high-throughput technologies and discusses the potential for integrative computational analysis to streamline the identification of infection-related lncRNAs and unveil novel targets for antiviral therapeutics. Full article
(This article belongs to the Special Issue Host Responses to Viral Infection)
Figures

Figure 1

Open AccessArticle Improving Influenza Vaccination Rate among Primary Healthcare Workers in Qatar
Received: 25 August 2017 / Revised: 3 October 2017 / Accepted: 5 October 2017 / Published: 10 October 2017
PDF Full-text (804 KB) | HTML Full-text | XML Full-text
Abstract
The purpose of this study was to improve influenza vaccination, and determine factors influencing vaccine declination among health care workers (HCW) in Qatar. We launched an influenza vaccination campaign to vaccinate around 4700 HCW in 22 Primary Health Care Corporation (PHCC) centers in
[...] Read more.
The purpose of this study was to improve influenza vaccination, and determine factors influencing vaccine declination among health care workers (HCW) in Qatar. We launched an influenza vaccination campaign to vaccinate around 4700 HCW in 22 Primary Health Care Corporation (PHCC) centers in Qatar between 1st and 15th of November, 2015. Our target was to vaccinate 60% of all HCW. Vaccine was offered free of charge at all centers, and information about the campaign and the importance of influenza vaccination was provided to employees through direct communication, emails, and social media networks. Staff were reported as vaccinated or non-vaccinated using a declination form that included their occupation, place of work and reasons for declining the vaccine. Survey responses were summarized as proportional outcomes. We exceeded our goal, and vaccinated 77% of the target population. Only 9% declined to take the vaccine, and the remaining 14% were either on leave or had already been vaccinated. Vaccine uptake was highest among aides (98.1%), followed by technicians (95.2%), and was lowest amongst pharmacists (73.2%), preceded by physicians (84%). Of those that declined the vaccine, 34% provided no reason, 18% declined it due to behavioral issues, and 21% declined it due to medical reasons. Uptake of influenza vaccine significantly increased during the 2015 immunization campaign. This is attributed to good planning, preparation, a high level of communication, and providing awareness and training to HCW with proper supervision and monitoring. Full article
Figures

Figure 1

Open AccessReview Approaches and Perspectives for Development of African Swine Fever Virus Vaccines
Received: 1 September 2017 / Revised: 1 October 2017 / Accepted: 3 October 2017 / Published: 7 October 2017
Cited by 2 | PDF Full-text (740 KB) | HTML Full-text | XML Full-text
Abstract
African swine fever (ASF) is a complex disease of swine, caused by a large DNA virus belonging to the family Asfarviridae. The disease shows variable clinical signs, with high case fatality rates, up to 100%, in the acute forms. ASF is currently present
[...] Read more.
African swine fever (ASF) is a complex disease of swine, caused by a large DNA virus belonging to the family Asfarviridae. The disease shows variable clinical signs, with high case fatality rates, up to 100%, in the acute forms. ASF is currently present in Africa and Europe where it circulates in different scenarios causing a high socio-economic impact. In most affected regions, control has not been effective in part due to lack of a vaccine. The availability of an effective and safe ASFV vaccines would support and enforce control–eradication strategies. Therefore, work leading to the rational development of protective ASF vaccines is a high priority. Several factors have hindered vaccine development, including the complexity of the ASF virus particle and the large number of proteins encoded by its genome. Many of these virus proteins inhibit the host’s immune system thus facilitating virus replication and persistence. We review previous work aimed at understanding ASFV–host interactions, including mechanisms of protective immunity, and approaches for vaccine development. These include live attenuated vaccines, and “subunit” vaccines, based on DNA, proteins, or virus vectors. In the shorter to medium term, live attenuated vaccines are the most promising and best positioned candidates. Gaps and future research directions are evaluated. Full article
Figures

Figure 1

Open AccessReview TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis
Received: 5 September 2017 / Revised: 29 September 2017 / Accepted: 1 October 2017 / Published: 4 October 2017
Cited by 4 | PDF Full-text (2351 KB) | HTML Full-text | XML Full-text
Abstract
Toll-Like Receptor 4 (TLR4) signal pathway plays an important role in initiating the innate immune response and its activation by bacterial endotoxin is responsible for chronic and acute inflammatory disorders that are becoming more and more frequent in developed countries. Modulation of the
[...] Read more.
Toll-Like Receptor 4 (TLR4) signal pathway plays an important role in initiating the innate immune response and its activation by bacterial endotoxin is responsible for chronic and acute inflammatory disorders that are becoming more and more frequent in developed countries. Modulation of the TLR4 pathway is a potential strategy to specifically target these pathologies. Among the diseases caused by TLR4 abnormal activation by bacterial endotoxin, sepsis is the most dangerous one because it is a life-threatening acute system inflammatory condition that still lacks specific pharmacological treatment. Here, we review molecules at a preclinical or clinical phase of development, that are active in inhibiting the TLR4-MyD88 and TLR4-TRIF pathways in animal models. These are low-molecular weight compounds of natural and synthetic origin that can be considered leads for drug development. The results of in vivo studies in the sepsis model and the mechanisms of action of drug leads are presented and critically discussed, evidencing the differences in treatment results from rodents to humans. Full article
(This article belongs to the Special Issue TLR signaling in Immune Response)
Figures

Figure 1

Open AccessArticle Characterization of the Burkholderia cenocepacia TonB Mutant as a Potential Live Attenuated Vaccine
Received: 2 September 2017 / Revised: 19 September 2017 / Accepted: 26 September 2017 / Published: 28 September 2017
Cited by 2 | PDF Full-text (1249 KB) | HTML Full-text | XML Full-text
Abstract
Burkholderia cenocepacia is an opportunistic pathogen prevalent in cystic fibrosis patients, which is particularly difficult to treat, causing chronic and eventually fatal infections. The lack of effective treatment options makes evident the need to develop alternative therapeutic or prophylactic approaches. Vaccines, and live
[...] Read more.
Burkholderia cenocepacia is an opportunistic pathogen prevalent in cystic fibrosis patients, which is particularly difficult to treat, causing chronic and eventually fatal infections. The lack of effective treatment options makes evident the need to develop alternative therapeutic or prophylactic approaches. Vaccines, and live attenuated vaccines, are an unexplored avenue to treat B. cenocepacia infections. Here we constructed and characterized a B. cenocepacia tonB mutant strain, which was unable to actively transport iron, to test whether this single gene deletion mutant (strain renamed GAP001) protected against an acute respiratory B. cenocepacia lethal infection. Here we show that the mutant strain GAP001 is attenuated, and effective at protecting against B. cenocepacia challenge. Intranasal administration of GAP001 to BALB/c mice resulted in almost complete survival with high degree of bacterial clearance. Full article
(This article belongs to the collection Vaccines Against Chronic and Persistent Bacterial Infections)
Figures

Figure 1

Open AccessArticle Microcrystalline Tyrosine (MCT®): A Depot Adjuvant in Licensed Allergy Immunotherapy Offers New Opportunities in Malaria
Received: 12 July 2017 / Revised: 25 August 2017 / Accepted: 20 September 2017 / Published: 27 September 2017
Cited by 1 | PDF Full-text (3002 KB) | HTML Full-text | XML Full-text
Abstract
Microcrystalline Tyrosine (MCT®) is a widely used proprietary depot excipient in specific immunotherapy for allergy. In the current study we assessed the potential of MCT to serve as an adjuvant in the development of a vaccine against malaria. To this end,
[...] Read more.
Microcrystalline Tyrosine (MCT®) is a widely used proprietary depot excipient in specific immunotherapy for allergy. In the current study we assessed the potential of MCT to serve as an adjuvant in the development of a vaccine against malaria. To this end, we formulated the circumsporozoite protein (CSP) of P. vivax in MCT and compared the induced immune responses to CSP formulated in PBS or Alum. Both MCT and Alum strongly increased immunogenicity of CSP compared to PBS in both C57BL/6 and BALB/c mice. Challenge studies in mice using a chimeric P. bergei expressing CSP of P. vivax demonstrated clinically improved symptoms of malaria with CSP formulated in both MCT and Alum; protection was, however, more pronounced if CSP was formulated in MCT. Hence, MCT may be an attractive biodegradable adjuvant useful for the development of novel prophylactic vaccines. Full article
Figures

Figure 1

Open AccessArticle Newcastle Disease Virus Vectored Bivalent Vaccine against Virulent Infectious Bursal Disease and Newcastle Disease of Chickens
Received: 14 August 2017 / Revised: 13 September 2017 / Accepted: 22 September 2017 / Published: 26 September 2017
Cited by 1 | PDF Full-text (2898 KB) | HTML Full-text | XML Full-text
Abstract
Newcastle disease virus (NDV) strain F is a lentogenic vaccine strain used for primary vaccination in day-old chickens against Newcastle disease (ND) in India and Southeast Asian countries. Recombinant NDV-F virus and another recombinant NDV harboring the major capsid protein VP2 gene of
[...] Read more.
Newcastle disease virus (NDV) strain F is a lentogenic vaccine strain used for primary vaccination in day-old chickens against Newcastle disease (ND) in India and Southeast Asian countries. Recombinant NDV-F virus and another recombinant NDV harboring the major capsid protein VP2 gene of a very virulent infectious bursal disease virus (IBDV); namely rNDV-F and rNDV-F/VP2, respectively, were generated using the NDV F strain. The rNDV-F/VP2 virus was slightly attenuated, as compared to the rNDV-F virus, as evidenced from the mean death time and intracerebral pathogenicity index analysis. This result indicates that rNDV-F/VP2 behaves as a lentogenic virus and it is stable even after 10 serial passages in embryonated chicken eggs. When chickens were vaccinated with the rNDV F/VP2, it induced both humoral and cell mediated immunity, and was able to confer complete protection against very virulent IBDV challenge and 80% protection against virulent NDV challenge. These results suggest that rNDV-F could be an effective and inherently safe vaccine vector. Here, we demonstrate that a bivalent NDV-IBDV vaccine candidate generated by reverse genetics method is safe, efficacious and cost-effective, which will greatly aid the poultry industry in developing countries. Full article
(This article belongs to the Special Issue Microbial Antigen Delivery)
Figures

Figure 1

Back to Top