Next Issue
Previous Issue

Table of Contents

Pathogens, Volume 1, Issue 2 (December 2012), Pages 65-174

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-5
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Chemoresistance to Valproate Treatment of Bovine Leukemia Virus-Infected Sheep; Identification of Improved HDAC Inhibitors
Pathogens 2012, 1(2), 65-82; doi:10.3390/pathogens1020065
Received: 5 September 2012 / Revised: 24 September 2012 / Accepted: 2 October 2012 / Published: 8 October 2012
PDF Full-text (990 KB) | HTML Full-text | XML Full-text
Abstract
We previously proved that a histone deacetylase inhibitor (valproate, VPA) decreases the number of leukemic cells in bovine leukemia virus (BLV)-infected sheep. Here, we characterize the mechanisms initiated upon interruption of treatment. We observed that VPA treatment is followed by a decrease [...] Read more.
We previously proved that a histone deacetylase inhibitor (valproate, VPA) decreases the number of leukemic cells in bovine leukemia virus (BLV)-infected sheep. Here, we characterize the mechanisms initiated upon interruption of treatment. We observed that VPA treatment is followed by a decrease of the B cell counts and proviral loads (copies per blood volume). However, all sheep eventually relapsed after different periods of time and became refractory to further VPA treatment. Sheep remained persistently infected with BLV. B lymphocytes isolated throughout treatment and relapse were responsive to VPA-induced apoptosis in cell culture. B cell proliferation is only marginally affected by VPA ex vivo. Interestingly, in four out of five sheep, ex vivo viral expression was nearly undetectable at the time of relapse. In two sheep, a new tumoral clone arose, most likely revealing a selection process exerted by VPA in vivo. We conclude that the interruption of VPA treatment leads to the resurgence of the leukemia in BLV-infected sheep and hypothesize that resistance to further treatment might be due to the failure of viral expression induction. The development of more potent HDAC inhibitors and/or the combination with other compounds can overcome chemoresistance. These observations in the BLV model may be important for therapies against the related Human T-lymphotropic virus type 1. Full article
(This article belongs to the Special Issue Infection and Cancer)
Figures

Open AccessArticle Hypomethylation and Over-Expression of the Beta Isoform of BLIMP1 is Induced by Epstein-Barr Virus Infection of B Cells; Potential Implications for the Pathogenesis of EBV-Associated Lymphomas
Pathogens 2012, 1(2), 83-101; doi:10.3390/pathogens1020083
Received: 15 August 2012 / Revised: 19 September 2012 / Accepted: 24 September 2012 / Published: 8 October 2012
Cited by 1 | PDF Full-text (858 KB) | HTML Full-text | XML Full-text
Abstract
B-lymphocyte-induced maturation protein 1 (BLIMP1) exists as two major isoforms, α and β, which arise from alternate promoters. Inactivation of the full length BLIMP1α isoform is thought to contribute to B cell lymphomagenesis by blocking post-germinal centre (GC) B cell differentiation. In [...] Read more.
B-lymphocyte-induced maturation protein 1 (BLIMP1) exists as two major isoforms, α and β, which arise from alternate promoters. Inactivation of the full length BLIMP1α isoform is thought to contribute to B cell lymphomagenesis by blocking post-germinal centre (GC) B cell differentiation. In contrast, the shorter β isoform is functionally impaired and over-expressed in several haematological malignancies, including diffuse large B cell lymphomas (DLBCL). We have studied the influence on BLIMP1β expression of the Epstein-Barr virus (EBV), a human herpesvirus that is implicated in the pathogenesis of several GC-derived lymphomas, including a subset of DLBCL and Hodgkin’s lymphoma (HL). We show that BLIMP1β expression is increased following the EBV infection of normal human tonsillar GC B cells. We also show that this change in expression is accompanied by hypomethylation of the BLIMP1β-specific promoter. Furthermore, we confirmed previous reports that the BLIMP1β promoter is hypomethylated in DLBCL cell lines and show for the first time that BLIMP1β is hypomethylated in the Hodgkin/Reed-Sternberg (HRS) cells of HL. Our results provide evidence in support of a role for BLIMP1β in the pathogenesis of EBV-associated B cell lymphomas. Full article
(This article belongs to the Special Issue Infection and Cancer)
Figures

Review

Jump to: Research

Open AccessReview Exploitation of Cellular Cytoskeletons and Signaling Pathways for Cell Entry by Kaposi’s Sarcoma-Associated Herpesvirus and the Closely Related Rhesus Rhadinovirus
Pathogens 2012, 1(2), 102-127; doi:10.3390/pathogens1020102
Received: 2 September 2012 / Revised: 11 October 2012 / Accepted: 13 October 2012 / Published: 22 October 2012
Cited by 2 | PDF Full-text (317 KB) | HTML Full-text | XML Full-text
Abstract
As obligate intracellular pathogens, viruses depend on the host cell machinery to complete their life cycle. Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic virus causally linked to the development of Kaposi’s sarcoma and several other lymphoproliferative malignancies. KSHV entry into cells is [...] Read more.
As obligate intracellular pathogens, viruses depend on the host cell machinery to complete their life cycle. Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic virus causally linked to the development of Kaposi’s sarcoma and several other lymphoproliferative malignancies. KSHV entry into cells is tightly regulated by diverse viral and cellular factors. In particular, KSHV actively engages cellular integrins and ubiquitination pathways for successful infection. Emerging evidence suggests that KSHV hijacks both actin and microtubule cytoskeletons at different phases during entry into cells. Here, we review recent findings on the early events during primary infection of KSHV and its closely related primate homolog rhesus rhadinovirus with highlights on the regulation of cellular cytoskeletons and signaling pathways that are important for this phase of virus life cycle. Full article
(This article belongs to the Special Issue Infection and Cancer)
Open AccessReview From Exit to Entry: Long-term Survival and Transmission of Salmonella
Pathogens 2012, 1(2), 128-155; doi:10.3390/pathogens1020128
Received: 10 August 2012 / Revised: 15 September 2012 / Accepted: 10 October 2012 / Published: 24 October 2012
Cited by 3 | PDF Full-text (497 KB) | HTML Full-text | XML Full-text
Abstract
Salmonella spp. are a leading cause of human infectious disease worldwide and pose a serious health concern. While we have an improving understanding of pathogenesis and the host-pathogen interactions underlying the infection process, comparatively little is known about the survival of pathogenic [...] Read more.
Salmonella spp. are a leading cause of human infectious disease worldwide and pose a serious health concern. While we have an improving understanding of pathogenesis and the host-pathogen interactions underlying the infection process, comparatively little is known about the survival of pathogenic Salmonella outside their hosts. This review focuses on three areas: (1) in vitro evidence that Salmonella spp. can survive for long periods of time under harsh conditions; (2) observations and conclusions about Salmonella persistence obtained from human outbreaks; and (3) new information revealed by genomic- and population-based studies of Salmonella and related enteric pathogens. We highlight the mechanisms of Salmonella persistence and transmission as an essential part of their lifecycle and a prerequisite for their evolutionary success as human pathogens. Full article
(This article belongs to the Special Issue Feature Papers)
Open AccessReview Epstein-Barr Virus Sequence Variation—Biology and Disease
Pathogens 2012, 1(2), 156-174; doi:10.3390/pathogens1020156
Received: 10 October 2012 / Revised: 16 October 2012 / Accepted: 30 October 2012 / Published: 8 November 2012
Cited by 7 | PDF Full-text (309 KB) | HTML Full-text | XML Full-text
Abstract
Some key questions in Epstein-Barr virus (EBV) biology center on whether naturally occurring sequence differences in the virus affect infection or EBV associated diseases. Understanding the pattern of EBV sequence variation is also important for possible development of EBV vaccines. At present [...] Read more.
Some key questions in Epstein-Barr virus (EBV) biology center on whether naturally occurring sequence differences in the virus affect infection or EBV associated diseases. Understanding the pattern of EBV sequence variation is also important for possible development of EBV vaccines. At present EBV isolates worldwide can be grouped into Type 1 and Type 2, a classification based on the EBNA2 gene sequence. Type 1 EBV is the most prevalent worldwide but Type 2 is common in parts of Africa. Type 1 transforms human B cells into lymphoblastoid cell lines much more efficiently than Type 2 EBV. Molecular mechanisms that may account for this difference in cell transformation are now becoming clearer. Advances in sequencing technology will greatly increase the amount of whole EBV genome data for EBV isolated from different parts of the world. Study of regional variation of EBV strains independent of the Type 1/Type 2 classification and systematic investigation of the relationship between viral strains, infection and disease will become possible. The recent discovery that specific mutation of the EBV EBNA3B gene may be linked to development of diffuse large B cell lymphoma illustrates the importance that mutations in the virus genome may have in infection and human disease. Full article
(This article belongs to the Special Issue Infection and Cancer)

Journal Contact

MDPI AG
Pathogens Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
pathogens@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Pathogens
Back to Top