Next Article in Journal
Noise Reduction of MEMS Gyroscope Based on Direct Modeling for an Angular Rate Signal
Next Article in Special Issue
Transferable Integrated Optical SU8 Devices: From Micronic Waveguides to 1D-Nanostructures
Previous Article in Journal
Microfluidic Vortex Enhancement for on-Chip Sample Preparation
Previous Article in Special Issue
Innovative SU-8 Lithography Techniques and Their Applications
Article Menu

Export Article

Open AccessArticle
Micromachines 2015, 6(2), 252-265; doi:10.3390/mi6020252

Performance of SU-8 Membrane Suitable for Deep X-Ray Grayscale Lithography

Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSME), National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
Academic Editor: Arnaud Bertsch
Received: 8 December 2014 / Accepted: 4 February 2015 / Published: 9 February 2015
(This article belongs to the Special Issue 15 Years of SU8 as MEMS Material)
View Full-Text   |   Download PDF [3745 KB, uploaded 9 February 2015]   |  

Abstract

In combination with tapered-trench-etching of Si and SU-8 photoresist, a grayscale mask for deep X-ray lithography was fabricated and passed a 10-times-exposure test. The performance of the X-ray grayscale mask was evaluated using the TERAS synchrotron radiation facility at the National Institute of Advanced Industrial Science and Technology (AIST). Although the SU-8 before photo-curing has been evaluated as a negative-tone photoresist for ultraviolet (UV) and X-ray lithographies, the characteristic of the SU-8 after photo-curing has not been investigated. A polymethyl methacrylate (PMMA) sheet was irradiated by a synchrotron radiation through an X-ray mask, and relationships between the dose energy and exposure depth, and between the dose energy and dimensional transition, were investigated. Using such a technique, the shape of a 26-μm-high Si absorber was transformed into the shape of a PMMA microneedle with a height of 76 μm, and done with a high contrast. Although during the fabrication process of the X-ray mask a 100-μm-pattern-pitch (by design) was enlarged to 120 μm. However, with an increase in an integrated dose energy this number decreased to 99 μm. These results show that the X-ray grayscale mask has many practical applications. In this paper, the author reports on the evaluation results of SU-8 when used as a membrane material for an X-ray mask. View Full-Text
Keywords: SU-8; X-ray lithography; X-ray mask; grayscale; tapered trench etching; PMMA; synchrotron radiation SU-8; X-ray lithography; X-ray mask; grayscale; tapered trench etching; PMMA; synchrotron radiation
Figures

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Mekaru, H. Performance of SU-8 Membrane Suitable for Deep X-Ray Grayscale Lithography. Micromachines 2015, 6, 252-265.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Micromachines EISSN 2072-666X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top