Viruses 2014, 6(1), 201-222; doi:10.3390/v6010201
Article

Estimating Hantavirus Risk in Southern Argentina: A GIS-Based Approach Combining Human Cases and Host Distribution

1 Instituto de Altos Estudios Espaciales "Mario Gulich", Centro Espacial Teófilo Tabanera, CONAE, Ruta Provincial C45, Km 8, Falda del Carmen, Córdoba 5187, Argentina 2 GIS and Remote Sensing Unit and Animal Ecology Unit, Department of Biodiversity and Molecular Ecology, Research and Innovation Center, Fondazione Edmund Mach, Via E. Mach 1, San Michele all'Adige, Trento 38010, Italy 3 Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, Agencia Postal N° 3, Río Cuarto, Córdoba 5800, Argentina 4 Instituto Nacional de Enfermedades Virales Humanas "Dr. Julio I. Maiztegui" (INEVH), Monteagudo 2510, Pergamino, Buenos Aires 2700, Argentina
* Author to whom correspondence should be addressed.
Received: 30 October 2013; in revised form: 17 December 2013 / Accepted: 18 December 2013 / Published: 14 January 2014
(This article belongs to the Special Issue Hantaviruses)
PDF Full-text Download PDF Full-Text [912 KB, uploaded 14 January 2014 09:28 CET]
Abstract: We use a Species Distribution Modeling (SDM) approach along with Geographic Information Systems (GIS) techniques to examine the potential distribution of hantavirus pulmonary syndrome (HPS) caused by Andes virus (ANDV) in southern Argentina and, more precisely, define and estimate the area with the highest infection probability for humans, through the combination with the distribution map for the competent rodent host (Oligoryzomys longicaudatus). Sites with confirmed cases of HPS in the period 1995–2009 were mostly concentrated in a narrow strip (~90 km × 900 km) along the Andes range from northern Neuquén to central Chubut province. This area is characterized by high mean annual precipitation (~1,000 mm on average), but dry summers (less than 100 mm), very low percentages of bare soil (~10% on average) and low temperatures in the coldest month (minimum average temperature −1.5 °C), as compared to the HPS-free areas, features that coincide with sub-Antarctic forests and shrublands (especially those dominated by the invasive plant Rosa rubiginosa), where rodent host abundances and ANDV prevalences are known to be the highest. Through the combination of predictive distribution maps of the reservoir host and disease cases, we found that the area with the highest probability for HPS to occur overlaps only 28% with the most suitable habitat for O. longicaudatus. With this approach, we made a step forward in the understanding of the risk factors that need to be considered in the forecasting and mapping of risk at the regional/national scale. We propose the implementation and use of thematic maps, such as the one built here, as a basic tool allowing public health authorities to focus surveillance efforts and normally scarce resources for prevention and control actions in vast areas like southern Argentina.
Keywords: Argentina; Oligoryzomys longicaudatus; Andes virus (ANDV); hantavirus pulmonary syndrome (HPS); Species Distribution Models (SDM); Geographic Information Systems (GIS); risk

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Andreo, V.; Neteler, M.; Rocchini, D.; Provensal, C.; Levis, S.; Porcasi, X.; Rizzoli, A.; Lanfri, M.; Scavuzzo, M.; Pini, N.; Enria, D.; Polop, J. Estimating Hantavirus Risk in Southern Argentina: A GIS-Based Approach Combining Human Cases and Host Distribution. Viruses 2014, 6, 201-222.

AMA Style

Andreo V, Neteler M, Rocchini D, Provensal C, Levis S, Porcasi X, Rizzoli A, Lanfri M, Scavuzzo M, Pini N, Enria D, Polop J. Estimating Hantavirus Risk in Southern Argentina: A GIS-Based Approach Combining Human Cases and Host Distribution. Viruses. 2014; 6(1):201-222.

Chicago/Turabian Style

Andreo, Veronica; Neteler, Markus; Rocchini, Duccio; Provensal, Cecilia; Levis, Silvana; Porcasi, Ximena; Rizzoli, Annapaola; Lanfri, Mario; Scavuzzo, Marcelo; Pini, Noemi; Enria, Delia; Polop, Jaime. 2014. "Estimating Hantavirus Risk in Southern Argentina: A GIS-Based Approach Combining Human Cases and Host Distribution." Viruses 6, no. 1: 201-222.

Viruses EISSN 1999-4915 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert